Skip to main content
No Access

Tourism, travel and tweets: algorithmic text analysis methodologies in tourism

Published Online:pp 81-99https://doi.org/10.1504/MEJM.2013.054071

Tourism and hospitality organisations depend on market knowledge to compete in innovation, product development, and customer relationship management. This paper shows that new forms of social media provide valuable and previously difficult to obtain real-time knowledge on tourist perceptions, concerns, and sentiment towards tourist destinations – both those already visited and those under consideration for a future visit. We show how analysis of comments from such social media as Twitter micro-blogs can be used to reveal potential and recent tourists motivations in the travel and hospitality industry in various locations.

Keywords

social media, hospitality information management, text mining, market intelligence, sentiment mining

References

  • 1. Adam, J. , Cobos, X. , Liu, S. (2007). Travel 2.0: Trends in Industry Awareness and Adoption. New York:New York University and PhoCusWright Inc. Google Scholar
  • 2. Akehurst, G. (2009). ‘User generated content: the use of blogs for tourism organisations and tourism consumers’. Service Business. 3, 1, 51-61 Google Scholar
  • 3. Beaumont, C. (2008). Tweet, Tweet, Here Comes Twitter. (accessed 20 April 2012), [online] http://www.telegraph.co.uk/ technology/3357007/Tweet-tweet-here-comes-Twitter.html Google Scholar
  • 4. Beineke, P. , Hastie, T. , Vaithyanathan, T. ‘The sentimental factor: improving review classification via human-provided information’. Proceedings of the 42nd Annual Meeting of Association for Computational Linguistics (ACL ‘04). 2004, 07, Barcelona, Spain:Association for Computational Linguistics , 10.3115/1218955.1218989 Google Scholar
  • 5. Boston Globe Thailand’s War Without an Audience. 2012, 07, 22, (accessed 25 December 2012), [online] http://www.bostonglobe.com/ideas/2012/07/21/thailand-conflict/5mKHjwxLL3Hqrw5eDfgskI/story.html Google Scholar
  • 6. Carson, D. , Marshall, S. Taylor, W. Yu, X. (2005). ‘An overview of developing regional tourism using information communications technology’. Encyclopedia of Developing Regional Communities with Information and Communication Technology. Hershey, PA:Idea Group Google Scholar
  • 7. Carson, D. (2008). ‘The ‘blogoshpere’ as a market research tool for tourism destinations: a case study of Australia’s Northern territory’. Journal of Vacation Marketing. 14, 2, 111-119 Google Scholar
  • 8. ChandraShekar, B.H. , Shoba, G. (2009). ‘Classification of documents using Kohonen’s self-organizing map’. Journal of Computer Theory and Engineering. 1, 5, 1793-8201 Google Scholar
  • 9. Chawla, N.V. , Bowyer, K.W. , Hall, L.O. , Kegelmeyer, W.P. (2002). ‘Synthetic minority over-sampling technique’. Journal of Artificial Intelligence Research. 16, 16, 321-357 Google Scholar
  • 10. Choi, S. , Lehto, X.Y. , Morrison, A.M. (2007). ‘Destination image representation on the web: content analysis of Macao travel related websites’. Tourism Management. 28, 1, 118-129 Google Scholar
  • 11. Claster, W.B. , Cooper, M. , Dinh, Q.H. (2009). ‘Modeling tourism sentiment about Cancun from Twitter tweets using Naive Bayes and unsupervised artificial neural nets’. Nature and Biologically Inspired Computing, 2010 Second World Congress on Nature & Biologically Inspired Computing, 158-163 Google Scholar
  • 12. Cobanoglu, C. (2006). ‘An analysis of blogs as a teaching tool as perceived by hospitality management students’. Journal of Hospitality, Leisure, Sport & Tourism Education. 5, 2, 83-88 Google Scholar
  • 13. ComScore Online Consumer-generated Reviews have Significant Impact on Offline Purchase. 2007, 11, 29, (accessed 9 December 2011), [online] http://www.comscore.com/press/release.asp?press =1928 Google Scholar
  • 14. Cooper, M. , Prideaux, B. Laws, E. (2005). ‘Japanese outbound tourism and the SARS epidemic of 2003’. Tourism Crises: Management Responses and Theoretical Insight. New York:The Haworth Hospitality Press , 117-132 Google Scholar
  • 15. Cooper, M. , MacNeil, N. , Pease, W. Cooper, M. Rowe, M. (2009). ‘Virtual reality revisited: new ICT tools for tourism marketing?’. Information and Communication Technologies in Support of the Tourism Industry. Hershey, PA:Idea Group Inc. Google Scholar
  • 16. Dellaert (2000). ‘Tourists’ valuation of other tourists’ contribution to travel web sites’. Proceedings of the 7th Conference on Information and Communication Technologies. 293-302 Google Scholar
  • 17. Dellarocas, C. (2003). ‘The digitization of word of mouth: promise and challenges of online feedback mechanisms’. Management Science. 49, 10, 1407-1424 Google Scholar
  • 18. Ellion (2007). Web 2.0 and the Travel Industry: Practical Strategies for Exploiting the Social Media Revolution. (accessed 20 April 2012), [online] http://www.ellion.co.uk/sectors/travel/index.php Google Scholar
  • 19. eMarketer UK OnlineTravel: Travelers are Sharing Experiences Online. 2007, 06, 25, (accessed 20 April 2012), [online] http://www.emarketer.com/Article.aspx?id=1005067andsrc=article2_newsltr Google Scholar
  • 20. Forrester Research Group (2007). Social Technographics. (accessed 20 April 2012), [online] http://www.forrester.com/rb/ Research/social_technographics%C2%AE/q/id/42057/t/2 Google Scholar
  • 21. Go, A. , Huang, L. , Bhayan, R. (2009). Twitter Sentiment Analysis. (accessed 20 April 2012), [online] http://www.nlp. stanford.edu Google Scholar
  • 22. Gretzel, U. , Yoo, K.H. , Purifoy, M. (2007). Online Travel Review Study: Role and Impact of Online Travel Reviews. (accessed 20 April 2012, [online] http://www.tripadvisor.com/pdfs/ OnlineTravelReviewReport.pdf Google Scholar
  • 23. Hepburn, C. (2007). Web 2.0 for the Tourism and Travel Industry: A White Paper. (accessed 20 April 2012), [online] http://blogs.reactive.com/RequestWhitepaper.aspx Google Scholar
  • 24. Honkela, T. (1997). Self-organizing Maps of Words for Natural Language Processing Applications. Finland:Helsinki University of Technology , Unpublished doctoral dissertation Google Scholar
  • 25. Horrigan, J. Pew Internet & American Life Project. 2008, 02, 13, (accessed 20 April 2012), Pew Research Center’s Internet & American Life Project, [online] http://www.pewinternet.org/Reports/2008/ Online-Shopping/01-Summary-of-Findings.aspx Google Scholar
  • 26. Hu, M. , Liu, B. (2004). ‘Mining and summarizing customer reviews’. Proceedings of the Tenth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD ‘04). 168-177, 10.1145/1014052.1014073 Google Scholar
  • 27. Jansen, B.J. , Zhang, M. , Sobel, K. , Chowdury, A. (2009). ‘Twitter power: tweets as electronic word of mouth’. Journal of the American Society for Information Sciences and Technology. 60, 11, 2169-2188 Google Scholar
  • 28. John, G.H. , Langley, P. ‘Estimating continuous distributions in Bayesian classifiers’. Proceedings of the 11th Conference on Uncertainty in Artificial Intelligence. 1995, 08, Montreal, Canada Google Scholar
  • 29. Kelleher, T. , Miller, B.M. (2006). ‘Organizational blogs and the human voice: relational strategies and relational outcomes’. Journal of Computer Mediated Communication. 11, 2, 395-414 Google Scholar
  • 30. Kennedy, A. , Inkpen, D. (2006). ‘Sentiment classification of movie reviews using contextual valence shifters’. Computational Intelligence. 22, 110-125 Google Scholar
  • 31. Laboy, F. , Torchio, P. (2007). Web 2.0 for the Travel Marketer and Consumer: A White Paper. (accessed 20 April 2012), [online] http://www.sabrehospitality.com/pdf/whitepaper.pdf Google Scholar
  • 32. Lagus, K. , Kaski, S. , Kohonen, T. (2004). ‘Mining massive document collections by the WEBSOM method’. Information Sciences. 163, 1–3, 135-156 Google Scholar
  • 33. Lee, J. , Koh, D. , Ong, C.N. (1989). ‘Statistical evaluation of agreement between two methods for measuring a quantitative variable’. Comput. Biol. Med.. 19, 1, 61-70 Google Scholar
  • 34. Mack, R.W. , Blose, J.E. , Pan, B. (2008). ‘Believe it or not: credibility of blogs in tourism’. Journal of Vacation Marketing. 14, 2, 133-144 Google Scholar
  • 35. McCallum, A. , Nigam, K. (1998). ‘A comparison of learning models for Naive Bayes text classification’. Working notes of the 1998 AAAI/ICML Workshop on Learning for Text Categorization, [online] http://www.cs.cmu.edu/~webkb/ Google Scholar
  • 36. Pan, B. , MacLaurin, T. , Crotts, J.C. (2007). ‘Travel blogs and the implications for destination marketing’. Journal of Travel Research. 46, 1, 35-45 Google Scholar
  • 37. Pang, B. , Lee, L. (2008). ‘Opinion mining and sentiment analysis’. Foundations and Trends in Information Retrieval. 2, 1–2, 1-135 Google Scholar
  • 38. Rabanser, U. , Ricci, F. (2005). ‘Recommender systems: do they have a viable business model in e-tourism’. Proceedings of the ENTER Conference in Innsbruck. Austria, 160-171, 10.1007/3-211-27283-6_15 Google Scholar
  • 39. Rainie, L. , Horrigan, J. Summary of Findings: Pew Internet & American Life Project. 2007, 01, 17, (accessed 20 April 2012), Pew Research Center’s Internet & American Life Project, [online] http://www.pewinternet.org/Reports/2007/Election-2006-Online/01-Summary-of-Findings. aspx# Google Scholar
  • 40. Sarks, G. Consumer Generated Content in Travel: A Roadmap for Bringing Consumers into the Conversation. 2007, 04, 16, Compete, Inc, Web-seminar presentation Google Scholar
  • 41. Senecal, S. , Nantel, J. (2004). ‘The influence of online product recommendations on consumers’ online choices’. Journal of Retailing. 80, 2, 159-169 Google Scholar
  • 42. Shanmuganathan, S. , Sallis, P. , Narayanan, A. (2009). Unsupervised Artificial Neural Nets for Modeling the Effects of Climate Change on New Zealand Grape Wines. (accessed 20 April 2012, [online] http://www.geo-informatics.org/publications/MODSIM09_Unsupervised_ANN_ Shanmuganathan.pdf Google Scholar
  • 43. Tajeddini, K. , Remy, D. , Pardo, P. (2011). ‘Market orientation and business performance: evidence from the hotel industry in Germany’. Int. J. Leisure and Tourism Marketing. 2, 3, 232-247 AbstractGoogle Scholar
  • 44. The Hindu Sri Lanka Steamrollers Hapless England. 2011, 03, 26, (accessed 25 December 2012), [online] http://www. thehindu.com/sport/cricket/article1573637.ece Google Scholar
  • 45. The Nation ‘Chinese cancelling Phuket trips amid redshirt protest fears’. 2010, 03, 03, (accessed 21 August 2012), [online] http://www.nationmultimedia.com/home/2010/03/03/business/Chinese-cancelling-Phuket-Trips-Amid-redshirt-prot-30123799.html Google Scholar
  • 46. Tourism Authority of Thailand (2010). Thailand Tourism in Crisis as Protesters Die in ‘Bloody Bangkok’. (accessed 21 August 2012), [online] http://voices.yahoo.com/thailand-tourism-crisis-as-protesters-die-bloody-2038433.html Google Scholar
  • 47. Werthner, H. , Ricci, F. (2004). ‘E-commerce and tourism’. Communications of the ACM – The Blogosphere. 47, 12, 101-105 Google Scholar
  • 48. Zhuang, L. , Jing, F. , Zhu, X. (2006). ‘Movie review mining and summarization’. Proceedings of the 15th ACM International Conference on Information and Knowledge Management (CIKM ‘06). 43-50, 10.1145/1183614.1183625 Google Scholar

Bibliography

  • 1. Adrees, L. , Damir, S. (2010). Bangkok under Curfew after Fresh Violence. (accessed 20 April 2012), [online] http://www.reuters.com/article/2010/05/19/us-thailand-idUSTRE64C0L620100519 Google Scholar
  • 2. Cardie, C. , Farina, C. , Bruce, T. (2006). ‘Using natural language processing to improve eRulemaking’. Proceedings of Digital Government Research. dg.o Google Scholar
  • 3. Christian Science Monitor (2010). EU Human Rights Report could Cost Sri Lanka $100 Million. (accessed 25 December 2012), 22 October 2009, [online] http://www.csmonitor.com/World/Asia-South-Central/2009/1022/ p06s07-wosc.html Google Scholar
  • 4. Claster, W.B. , Cooper, M. , Isoda, Y. , Sallis, P. (2010). ‘Thailand – tourism and conflict: modeling tourism sentiment from Twitter tweets using Naïve Bayes and unsupervised artificial neural nets’. CIMSim2010. Computational Intelligence, Modelling and Simulation. 89-94 Google Scholar
  • 5. Jindal, N. , Liu, B. (2006). ‘Identifying comparative sentences in text documents’. Proceedings of the 29th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, SIGIR ‘06). 244-251, ACM Digital Library, 10.1145/ 1148170.1148215 Google Scholar
  • 6. Kwon, N. , Shulman, S.W. , Hovy, E. (2006). ‘Multidimensional text analysis for eRulemaking’. Proceedings of Digital Government Research. dg.o Google Scholar
  • 7. Phelan, O. , McCarthy, K. , Smyth, B. (2009). ‘Using Twitter to recommend real-time topical news’. Proceedings of the Third ACM Conference on Recommender Systems, RecSys ‘09). 385-388, 10.1145/1639714.1639794 Google Scholar
  • 8. Salton, G. , McGill, M.J. (1983). Introduction to Modern Information Retrieval. New York:McGraw-Hill Google Scholar
  • 9. Schuller, B. , Schenk, J. , Rigoll, G. , Knaup, T. (2009). ‘‘The godfather’ vs. ‘chaos’: comparing linguistic analysis based on online knowledge sources and bags-of-n-grams for movie review valence estimation’. Proceedings of 10th International Conference on Document Analysis and Recognition ICDAR 2009. 858-862 Google Scholar