Skip to main content
Skip main navigation
No Access

Second order sliding modes control for rope winch based automotive driver robot

Published Online:pp 147-164https://doi.org/10.1504/IJVD.2013.052707

In this contribution a second order sliding modes control algorithm for position tracking of an in-vehicle driver robot is introduced. For this purpose a recently developed rope winch based automotive driver robot is considered. Here, the distance between a brake, clutch or accelerator pedal and the ground of the driver’s cab should follow a given reference value. Nonlinear simulations and experimental results show the efficiency and the robustness properties of the proposed second order sliding modes control design approach.

Keywords

second order sliding modes control, variable structure systems, electrical drives, automotive applications

References

  • 1. Alt, B. , Blath, J.P. , Svaricek, F. , Schultalbers, M. (2009a). ‘Control of idle engine speed and torque reserve with higher order sliding modes’. Proceedings of the IEEE Multi Conference on Systems and Control. St. Petersburg, Russia Google Scholar
  • 2. Alt, B. , Blath, J.P. , Svaricek, F. , Schultalbers, M. (2009b). ‘Multiple sliding surface control of idle engine speed and torque reserve with dead start assist control’. IEEE Transactions on Industrial Electronics. 14, 9, 3580-3592 Google Scholar
  • 3. Alt, B. , Svaricek, F. (2010). ‘Second-order sliding modes control for in-vehicle pedal robots’. Proceedings of the IEEE Workshop on Variable Structure Systems. Mexico City, Mexico Google Scholar
  • 4. Attaianese, C. , Perfetto, A. , Tomasso, G. (1999). ‘Robust position control of DC drives by means of H controllers’. IEE Proceedings on Electric Power Applications. 146, 4, 391-396 Google Scholar
  • 5. Bartolini, G. , Ferrara, A. , Usai, E. (1998). ‘Chattering avoidance by second order sliding mode control’. IEEE Transactions on Automatic Control. 43, 2, 241-246 Google Scholar
  • 6. Bartolini, G. , Ferrara, A. , Levant, A. , Usai, E. (1999). ‘On second order sliding mode controllers’. Variable Structure Systems, Sliding Mode and Nonlinear Control. London Berlin, Heidelberg:Springer Google Scholar
  • 7. Butler, H. , Honderd, G. , Amerongen, J.V. (1989). ‘Model reference control of a direct drive DC motor’. IEEE Control Systems Magazine. 9, 1, 80-84 Google Scholar
  • 8. Chern, T.L. , Wong, J.S. (1995). ‘DSP based integral variable structure control for DC motor servo drives’. IEE Proceedings on Control Theory and Applications. 142, 5, 444-450 Google Scholar
  • 9. Edwards, C. , Spurgeon, S.K. (1998). Sliding Mode Control, Theory and Applications. London:Taylor and Francis Ltd Google Scholar
  • 10. Ganzelmeier, L. , Helbig, J. , Schnieder, E. (2001). ‘Robustness and performance issues for advanced control of vehicle dynamics’. Proceedings on the IEEE Conference on Intelligent Transportation Systems. Oakland, CA, USA Google Scholar
  • 11. Gao, W. , Hung, J.C. (1993). ‘Variable structure control of nonlinear systems: a new approach’. IEEE Transactions on Industrial Electronics. 40, 1, 45-55 Google Scholar
  • 12. Hung, J.Y. , Gao, W. , Hung, J.C. (1993). ‘Variable structure control: a survey’. IEEE Transactions on Industrial Electronics. 40, 1, 2-22 Google Scholar
  • 13. Khan, M.K. , Spurgeon, S.K. , Puleston, P.F. (2001). ‘Robust speed control of an automotive engine using second order sliding modes’. Proceedings of the 6th European Control Conference. Porto, Portugal Google Scholar
  • 14. Khan, M.K. , Goh, K.B. , Spurgeon, S.K. (2003). ‘Second order sliding mode control of a diesel engine’. Asian Journal of Control. 5, 4, 614-619 Google Scholar
  • 15. Krstic, M. , Kanellakapoulous, I. , Kokotovic, P. (1995). Nonlinear and Adaptive Control Design. New York:Wiley Interscience Google Scholar
  • 16. Levant, A. (1993). ‘Sliding order and sliding accuracy in sliding mode control’. International Journal of Control. 58, 6, 1247-1263 Google Scholar
  • 17. Levant, A. (1997). ‘Higher order sliding: collection of design tools’. Proceedings of the 4th European Control Conference. Brussels, Belgium Google Scholar
  • 18. Levant, A. (1998). ‘Robust exact differentiation via sliding-mode technique’. Automatica. 34, 3, 379-384 Google Scholar
  • 19. Levant, A. (2005). ‘Homogeneity approach to higher-order sliding mode design’. Automatica. 41, 823-830 Google Scholar
  • 20. Ljung, L. (1999). System Identification – Theory for the User. 2nd ed., Upper Saddle River, NJ, USA:PTR Prentice Hall Google Scholar
  • 21. Ljung, L. (2006). System Identification Toolbox for Use with Matlab. Natick, MA, USA:The Mathworks Inc. Google Scholar
  • 22. Ogata, K. (1997). Modern Control Engineering. 3rd ed., NJ, USA:Prentice Hall Google Scholar
  • 23. Perruquetti, W. , Barbot, J.P. (2002). Sliding Mode Control in Engineering. New York, USA:Marcel Dekker Inc. Google Scholar
  • 24. Pisano, A. , Davila, A. , Fridman, L. , Usai, E. (2008). ‘Cascade control of PM-DC drives via second-order sliding-mode technique’. IEEE Transactions on Industrial Electronics. 55, 11, 3846-3854 Google Scholar
  • 25. Schröder, D. (2009). Elektrische Antriebe – Regelung von Antriebssystemen, 3. Auflage. Berlin, Heidelberg, New York:Springer Verlag Google Scholar
  • 26. Tan, Y.K. , Panda, S.K. (2003). ‘Sliding-mode position controller for linear permanent magnet brushless dc servo motors’. IEEE Conference on Power Electronics and Drive Systems, Singapore Google Scholar
  • 27. Utkin, V.I. (1977). ‘Variable structure systems with sliding modes’. IEEE Transactions on Automatic Control. 22, 212-222 Google Scholar
  • 28. Utkin, V.I. , Guldner, J. , Shi, J. (1999). Sliding Mode Control in Electromechanical Systems. London:Taylor and Francis Ltd Google Scholar
  • 29. Weisser, H. , Schulenberg, P.J. , Gollinger, H. , Michler, T. (1999). ‘Autonomous driving on vehicle test tracks: overview, implementation and vehicle diagnosis’. Proceedings on the IEEE Conference on Intelligent Transportation Systems. Tokyo, Japan Google Scholar

Websites