Skip to main content
Skip main navigation
No Access

The small reconnaissance of atmospheres mission platform concept, part 1: motivations and outline for a swarm of scientific microprobes to the clouds of Jupiter in 2030

Published Online:pp 327-344https://doi.org/10.1504/IJSPACESE.2014.066960

A mission concept is presented for several small atmospheric entry vehicles at Jupiter. By relaxing the requirement for substantial penetration into the Jovian atmosphere, the size of the atmospheric entry probes shrinks dramatically. Such atmospheric entry probes would experience much less heating than previous concepts of much larger (~300kg) spacecraft presented as minimum concepts and no parachutes are necessary. This reduces complexity while still permitting over 15 minutes of useable science under free-fall from above the 0.41 bar level to near the 10 bar level of the Jovian Atmosphere during which up to 20 Mbits of data could be returned per probe. By dividing the payload, the risk to the mission is substantially mitigated and ground truth may be obtained from a large part of the entire planetary atmosphere using a single launch.

Keywords

mission concept, spacecraft design, planetary science, atmospheric science, Jupiter, microprobe

References

  • 1. D.H. Atkinson, J.B. Pollack, A. Seiff, '‘Galileo Doppler measurements of, the deep zonal winds at Jupiter’' Science (1996) Google Scholar
  • 2. S.K. Atreya, A-S. Wong, '‘Coupled clouds and chemistry of the giant planets – a case for multiprobes’' Space Sci Rev. (2005) Google Scholar
  • 3. S.K. Atreya, T.C. Owen, S.J. Bolton, T. Guillot, '‘Multiprobe exploration of the giant planets – shallow probes’' Proceedings, International Planetary Probe Workshop (2006) Google Scholar
  • 4. B. Bairstow, R.L. Cataldo, '‘A low-cost small radioisotope power system centaur flyby smallsat mission concept’' (2013) Google Scholar
  • 5. T.S. Balint, '‘Overview of mission architecture options for Jupiter deep entry probes’' (2005) Google Scholar
  • 6. R.F. Beebe, A.A. Simon, L.F. Huber, '‘Comparison of Galileo probe and earth-based translation rates of Jupiter’s equatorial clouds’' Science (1996) Google Scholar
  • 7. K.A. Carroll, H. Spencer, R. Zee, 'CARAVEL: a solar-sail-based nanosatellite mission to a near-earth asteroid’' (2012) Google Scholar
  • 8. J. Castillo-Rogez, A. Klesh, P. Kahn, R. Staehle, I. Nesnas, M. Pavone, '‘Next generation smallsat – dare to explore where no craft has gone before’' (2013) Google Scholar
  • 9. I. de Pater, F. Van der Tak, R.G. Strom, S.H. Brecht, '‘The evolution of Jupiter’s radiation belts after the impact of comet D/Shoemaker – Levy 9’' Icarus (1997) Google Scholar
  • 10. P.D. Fieseler, S.M. Ardalan, A.R. Frederickson, '‘The radiation effects on Galileo spacecraft systems at Jupiter’' IEEE Transactions on Nuclear Science (2002) Google Scholar
  • 11. H.M. Fischer, E. Pehlke, G. Wibberenz, L.J. Lanzerotti, J.D. Mihalov, '‘High energy charged particles in the innermost Jovian magnetosphere’' Science (1996) Google Scholar
  • 12. J.J. Fortney, W.B. Hubbard, '‘Phase separation in giant planets: inhomogeneous evolution of Saturn’' Icarus (2003) Google Scholar
  • 13. W. Frazier, R. Rohrschneider, M. Verzuh, '‘Cubesat strategies for long-life missions’' (2013) Google Scholar
  • 14. I. Garrick- Bethell, '‘Lunar magnetic field measurements with a cubesat impactor’' (2013) Google Scholar
  • 15. L. Halatek, '‘Cubesats and Europa: focused science with disposable spacecraft’' (2013) Google Scholar
  • 16. D.M. Hunten, L. Colin, J.E. Hansen, '‘Atmospheric science on the Galileo mission’' Space Science Reviews (1986) Google Scholar
  • 17. T. Komarek, Z. Bailey, H. Schone, T. Jedrey, A. Chandler, '‘Novel ideas for exploring mars with CubeSats: challenges and possibilities’' (2013) Google Scholar
  • 18. J.J. Lang, J.D. Baker, T.P. McElrath, T. Moreno, J.S. Snyder, '‘Enabling low cost planetary missions through rideshare opportunities’' (2013) Google Scholar
  • 19. L.J. Lanzerotti, K. Rinnert, G. Dehmel, F.O. Gliem, E.P. Krider, M.A. Uman, J. Bach, '‘Radio frequency signals in Jupiter’s atmosphere’' Science (1996) Google Scholar
  • 20. J. Lloyd, '‘Far above: interplanetary dust structures with a small satellite in inclined heliocentric orbit’' (2013) Google Scholar
  • 21. S. Matousek, '‘The Juno new frontiers mission’' Acta Astronautica (2007) Google Scholar
  • 22. G. Mitri, '‘Preliminary design for a Europa mission’' Proceedings of the 33rd Lunar and Planetary Science Conference (2002) Google Scholar
  • 23. J.E. Moores, K.A. Carroll, I. DeSouza, K. Sathiyanathan, B. Stoute, J. Shan, R.S. Lee, B. Quine, '‘The small reconnaissance of atmospheres mission platform concept, part 2: design of carrier spacecraft and atmospheric entry probes’' Int. J. Space Science and Engineering (2014) Google Scholar
  • 24. (2011) Google Scholar
  • 25. H.B. Niemann, '‘The Galileo probe mass spectrometer: composition of Jupiter’s atmosphere’' Science (1996) Google Scholar
  • 26. G. Orton, '‘Earth-based observations of the Galileo probe entry site’' Science (1996) Google Scholar
  • 27. D. Pedtke, M. Lofquist, K. Kohlhepp, '‘The modular S-Band radio suite’' (2004) Google Scholar
  • 28. J. Poncy, P. Couzin, C. Billot, '‘Using smallsats and cubesats as ancillaries: a low-cost strategy maximizing the science return of fly-by missions’' (2013) Google Scholar
  • 29. B. Ragent, D.S. Colburn, P. Avrin, K.A. Rages, '‘Results of the Galileo probe nephelometer experiment’' Science (1996) Google Scholar
  • 30. B. Ragent, D.S. Colburn, K.A. Rages, T.C.D. Knight, P. Arvin, G.S. Orton, P.A. Yanamandra-Fischer, G.W. Grams, '‘The clouds of Jupiter: results of the Galileo Jupiter mission probe nephelometer experiment’' J. Geopys. Res. (1998) Google Scholar
  • 31. J.E. Riedel, C. Marrese-Reading, Y.H. Lee, '‘A low-cost NEO micro Hunter-Seeker mission concept’' (2013) Google Scholar
  • 32. H. Ritter, F. Mazoué, A. Santovincenzo, A. Atzei, '‘Jupiter entry probe feasibility study from the ESTEC CDF team heat flux evaluation and TPS definition’' (2006) Google Scholar
  • 33. A. Seiff, '‘Structure of the atmosphere of Jupiter: Galileo probe measurements’' Science (1996) Google Scholar
  • 34. H. Spencer, R. Zee, '‘MOMENT: a Canadian Nanosatellite Mars Orbiter for magnetic mapping’' (2012) Google Scholar
  • 35. L.J. Spilker, Passage to a Ringed World: The Cassini-Huygens Mission to Saturn and Titan (1997) Google Scholar
  • 36. L.A. Sromovsky, F.A. Best, A.D. Collard, P.M. Fry, H.E. Revercomb, R.S. Freeman, G.S. Orton, J.L. Hayden, M.G. Tomasko, M.T. Lemmon, '‘Solar and thermal radiation in Jupiter’s atmosphere: initial results of the Galileo probe net flux radiometer’' Science (1996) Google Scholar
  • 37. U. Von Zahn, D.M. Hunten, '‘The helium mass fraction in Jupiter’s atmosphere’' Science (1996) Google Scholar
  • 38. P. Worden, '‘Small satellites for science and other uses: promises and challenges’' (2012) Google Scholar
  • 39. R.E. Young, M.A. Smith, C.K. Sobeck, '‘Galileo probe: in situ observations of Jupiter’s atmosphere’' Science (1996) Google Scholar
  • 40. R.E. Zee, P. Stibrany, '‘Canada’s first microsatellite – an enabling low-cost technology for future space science and technology missions’' Canadian Aeronautics and Space Journal (2002) Google Scholar