Skip to main content
Skip main navigation
No Access

Earthy, solaris and atmospheric energy sources

Published Online:pp 49-64https://doi.org/10.1504/IJRET.2015.067515

Earth, sun and atmosphere are the ultimate energy resources. In addition to fossil fuels, earth radiates over 45 TW geothermal energy. Sun radiates about 89 PW energy to earth’s surface. Lunar gravity supplies over 100 GW tidal ocean energy. Accessible energy from geothermal, solar, tides, waves and winds is far more than our current 17 TW energy demand, yet there are new avenues like tornadoes and lightning energies. We have to harness storms to serve humanity rather than destroying it. Fossil fuels and uranium reserves will continue to exist beyond 21st century, yet energy transition from fossil fuels to renewable energy sources is necessary to fight against looming climate changes.

Keywords

renewable energy, fossil fuels, solar energy, atmospheric electricity

References

  • 1. Bryan, B. , Hellemans, A. (2004). The History of Science and Technology: A Browser’s Guide to the Great Discoveries, Inventions, and the People Who Made Them from the Dawn of Time to Today. USA:Houghton Mifflin Harcourt , ISBN 0-618-22123-9 Google Scholar
  • 2. Bugaje, I.M. (2006). ‘Renewable energy for sustainable development in Africa: a review’. Renewable and Sustainable Energy Reviews. 10, 3, 603-612, Review Article Google Scholar
  • 3. 2007 01 CPL Report No. 0007-100000-001-000 Google Scholar
  • 4. Dolezalek, H. (1972). ‘Discussion of the fundamental problem of atmospheric electricity’. Pure and Applied Geophysics. 100, 1, 8-43 Google Scholar
  • 5. Duffey, R.B. (2005). ‘Sustainable futures using nuclear energy’. Prog. in Nuclear Energy. 47, 1–4, 535-543 Google Scholar
  • 6. Faaij, A.P.C. (2006). ‘Bio-energy in Europe: changing technology choices’. Energy Policy. 34, 3, 322-342 Google Scholar
  • 7. Ginger, D.S. , Greenham, N.C. (1999). ‘Photoinduced electron transfer from conjugated polymers to CdSe nanocrystals’. Phys. Review B. 59, 16, 10622 Google Scholar
  • 8. Gonzalez, E.D. , Pereira, C. , Gonzalez, A.L.C. , Martin, I.M. , Dutra, S.L.G. , Pinto, O., Jr. , Wygant, J. , Mozer, F.S. (1982). ‘Large horizontal electric fields measured at balloon heights of the Brazilian magnetic anomaly and association to local energetic particle precipitation’. Geophys. Res. Lett.. 9, 5, 567-570 Google Scholar
  • 9. Hale, L.C. , Croskey, C.L. , Mitchell, J.D. (1981). ‘Measurements of middle-atmosphere electric fields and associated electrical conductivities’. Geophys. Res. Lett.. 8, 8, 927-930 Google Scholar
  • 10. Harison, R.H. (2004). ‘The global atmospheric electrical circuit and climate’. Surveys in Geophysics. 25, 5–6, 441-484 Google Scholar
  • 11. Herbert, G.M.J. , Iniyanb, S. , Sreevalsan, E. , Rajapandian, S. (2007). ‘A review of wind energy technologies’. Renewable and Sustainable Energy Reviews. 11, 6, 117-1145 Google Scholar
  • 12. Hill, R.D. (1971). ‘Spherical capacitor hypothesis of earth’s electric field’. Pure and Applied Geophysics. 84, 1, 67-74 Google Scholar
  • 13. (accessed July 2008) http://en.wikipedia.org/wiki/List_of_countries_by_population Google Scholar
  • 14. (accessed August 2009) http://www.nrel.gov/gis/solar.html Google Scholar
  • 15. Kasemir, H. (1959). ‘Das Gewitter als Generator im luftelectrischen Stromkreis (I and II)’ (‘The weather as a generator of atmospheric electrical current ?ow’). Z. Phys.. 25, 33-96 Google Scholar
  • 16. Kasemir, H.W. (1979). ‘The atmospheric electric global circuit’. Proceeding Workshop on the Need for Lightning Observations from Space, NASA CP-2095. 136-147 Google Scholar
  • 17. Kelley, M.C. (1983). ‘Middle atmospheric electrodynamics’. Rev. Geophys. Space Phys.. 21, 2, 273-275 Google Scholar
  • 18. Koopman, D. , Wilkerson, T.D. (1971). ‘Channelling of an ionizing electrical streamer by a laser beam’. J. App. Phys. 42, 5, 1883 Google Scholar
  • 19. Kozima, M.A. A Brief History of Laser Guided Lightning Discharge Models and Experiments. 1994, 07, Project Report No. PL-TR-94-2193 Google Scholar
  • 20. La Fontaine, B. , Comptois, D. , Chien, C.Y. , Desparois, A. , Gérin, F. , Jarry, G. , Johnston, T.W. , Kieffer, J.C. , Martin, F. , Mawassi, R. , Pépin, H. , Rizk, F.A.M. , Vidal, F. , Potvin, C. , Couture, P. , Mercure, H.P. (2000). ‘Guiding large scale large-spark discharge with ultrashort laser filaments’. J. Appl. Phys.. 88, 2, 610-615 Google Scholar
  • 21. Lund, H. (2007). ‘Renewable energy strategies for sustainable development’. Energy. 32, 6, 912-919 Google Scholar
  • 22. Makarova, L.N. , Shirochkov, A.V. (1998). A New Approach to the Global Electric Circuit Conception. St-Petersburg, Russia:Arctic & Antarctic Research Institute , 199397 Google Scholar
  • 23. Makarova, L.N. , Shirochkov, A.V. , Koptjaeva, K.V. (1998). ‘The Earth’s magnetopause as an element of the global electric circuit’. Geomagnetism and Aeronomy. 38, 3, 156-159 Google Scholar
  • 24. Marbán, G. , Valdés-Solís, T. ‘Towards the hydrogen economy’. Int. J. Hydrogen Energy. 2007, 12, 32, 12, 1625 Google Scholar
  • 25. Markson, R. (1978). ‘Solar modulation of atmospheric electrification and possible implications for the sun-weather relationship’. Nature. 273, 5658, 103-109 Google Scholar
  • 26. McFedries, P. (2008). ‘Technically speaking: of geeks, modders, and overlookers’. IEEE Spectrum. 45, 4, 20 Google Scholar
  • 27. Méjean, G. , Ackermann, R. , Kasparian, J. , Salmon, E. , Yu, J. , Wolf, J-P. , Rethmeier, K. , Kalkner, W. , Rohwetter, P. , Stelmaszczyk, K. , Wöste, L. (2006). ‘Improved laser triggering and guiding of megavolt discharges with dual fs-ns pulses’. App. Phys. Lett.. 88, 2, 021101-021101-3 Google Scholar
  • 28. National Research Council (1986). The Earth’s Electrical Environment. USA:National Academic Press , ISBN: 0-309-55766-6 Google Scholar
  • 29. Oleg, J. (1971). ‘Operation of electric motors from the atmospheric electric field’. Am. J. Phys.. 39, 776 Google Scholar
  • 30. Omer, A.M. (2006). ‘Ground-source heat pumps systems and applications’. Renewable and Sustainable Energy Reviews. 12, 2, 344-371, February 2008 Google Scholar
  • 31. Pasko, V.P. ‘Atmospheric physics: electric jets’. Nature. 2003, 06, 26, 423, 927-929 Google Scholar
  • 32. Pearce, J.M. ‘Photovoltaics – a path to sustainable futures’. Futures. 2002, 09, 34, 7, 663-674 Google Scholar
  • 33. Plotkin, V.V. (1992). ‘The ionosphere as a load on the global atmospheric electrical circuit’. Radiophysics and Quantum Electronics. 35, 11–12, 575-583 Google Scholar
  • 34. Prosini, P.P. , Gislon, P. (2006). ‘A hydrogen refill for cellular phone’. J. of Pow. Sour.. 161, 1, 290-293 Google Scholar
  • 35. Rakov, V.A. , Uman, M.A. (2003). Lightning: Physics and Effects. UK:Cambridge University Press , ISBN 0521583276 687 pp Google Scholar
  • 36. Renewable Energy Policy Network for the 21st Century. [online] http://www.ren21.net Google Scholar
  • 37. Rycroft, M.J. (2006). ‘Electrical processes coupling the atmosphere and ionosphere: an overview’. J. Atmos. Sol.-Terr. Phys.. 68, 3–5, 445-456 Google Scholar
  • 38. Rycroft, M.J. , Cho, M. (1998). ‘Modeling electric and magnetic fields due to thunderclouds and lightning from cloud-tops to the ionosphere’. J. Atmos. Sol.-Terr. Phys.. 60, 7–9, 889-893 Google Scholar
  • 39. Rycroft, M.J. , Israelsson, S. , Price, C. (2000). ‘The global atmospheric electric circuit, solar activity and climate change’. J. Atmos. Sol. Terr. Phys.. 62, 17–18, 1563-1576 Google Scholar
  • 40. Sapkota, B.K. , Varshneya, N.C. (1990). ‘On the global atmospheric electrical circuit’. Journal of Atmospheric and Terrestrial Physics. 52, 1, 1-20 Google Scholar
  • 41. Shindo, T. , Aihara, Y. , Miki, M. , Suzuki, T. (1993). ‘Model experiments of laser triggered lightning’. IEEE Transactions on Power Delivery. 8, 1, Google Scholar
  • 42. Siingh, D. , Gopalakrishnan, V. , Singh, R.P. , Kamra, A.K. , Singh, S. , Pant, V. , Singh, R. , Singh, A.K. (2007). ‘The atmospheric global electric circuit: an overview’. Atm. Res.. 84, 2, 91-110 Google Scholar
  • 43. Smil, V. (2003). Energy at the Crossroads. USA:MIT Press , 241 Google Scholar
  • 44. Su, H-T. , Hsu, R-R. , Chen, A.B. , Wang, Y.C. , Hsiao, W.S. , Lai, W.C. , Lee, L.C. , Sato, M. , Fukunishi, H. ‘Gigantic jets between a thundercloud and the ionosphere’. Nature. 2003, 06, 26, 423, 974-976 Google Scholar
  • 45. Tester, J.W. (2005). Sustainable Energy: Choosing Among Options. USA:The MIT Press Google Scholar
  • 46. Tinsely, B.A. (2000). ‘Influence of solar wind on the global electric circuit, and inferred effects on cloud microphysics, temperature, and dynamics in the troposphere’. Space Sci. Rev.. 94, 1–2, 231-258 Google Scholar
  • 47. Turek, M. , Bandura, B. (2007). ‘Renewable energy by reverse electrodialysis’. Desalination. 205, 1–3, 67-74 Google Scholar
  • 48. US Government, CIA (2008). The World Fact-book. USA:Washington , ISSN: 1553-8133 0277-1527 Google Scholar
  • 49. Webb, W.L. (1971). ‘Global electrical currents’. Pure and Applied Geophysics. 84, 1, 89-108 Google Scholar
  • 50. Zhao, X.M. , Diels, J-C. , Wang, C.Y. , Elizondo, J. (1995). ‘Femtosecond ultraviolet laser pulse induced electrical discharges in gases’. IEEE J. Quant. Elec.. 31, 3, 599-612 Google Scholar