Skip to main content
No Access

Modelling of unsteady cavitating flow

Published Online:pp 141-158https://doi.org/10.1504/IJRET.2014.060361

A 2D numerical model is proposed in this paper to simulate unsteady cavitating flows around hydrofoil NACA66mod. The objective of this study is to define a numerical procedure to model the unsteady cavitating flow. The Reynolds-averaged Navier-Stokes equations are solved for the liquid and vapour mixture, which is considered as a single fluid with variable density which is expressed as function of the vapour volume fraction. The closure of this variable is provided by the transport equation with a source term TEM. The processes of evaporation and condensation are governed by changes in pressure within the flow. The source term is implanted in the CFD code ANSYS CFX v12. The influence of numerical and physical parameters is presented in detail. The numerical simulations are in good agreement with the experimental data for steady and unsteady flow around the hydrofoil.

Keywords

turbulence model, transport equation, mesh quality, vapour pocket, growth and collapse, steady flow, unsteady flow, k-ε modified, NACA0009, NACA66mod

References

  • 1. Ahuja, V. , Hosangadi, A. (2006). ‘A numerical study of cavitation in cryogenic fluids part 1: mean flow parametric studies’. Sixth International Symposium on Cavitation Google Scholar
  • 2. ANSYS CFX (2010). ANSYS CFX-Solver Theory Guide. 69 Google Scholar
  • 3. Ausoni, P. (2009). Turbulent Vortex Shedding from a Blunt Trailing Edge Hydrofoil. EPFL, thesis Google Scholar
  • 4. Batchelor, G.K. (1967). An Introduction to Fluid Dynamics. Cambridge University Press Google Scholar
  • 5. Callenaere, M. , Franc, J. , Michel, J. , Riondet, M. (2001). ‘The cavitation instability induced by the development of a reentrant jet’. Journal of Fluid Mechanics. 444, 4, 223-256 Google Scholar
  • 6. Chen, Y. , Heiste, S.D. (1996). ‘Modelling hydrodynamic nonequilibrium in cavitating flows’. Tr. ASME Journal Fluids Eng.. 1, Google Scholar
  • 7. Coutier-Delgosha, O. , Fortes-Patella, R. , Reboud, J.L. (2003). ‘Evaluation of the turbulence model: influence on the numerical simulations of unsteady cavitation’. Fluids Eng.. 125, 1, 38-45 Google Scholar
  • 8. Dupont, P. (1993). ‘Etude de la dynamique d’une poche de cavitation partielle en vue de la prediction de l’érosion dans les turbomachines hydrauliques’. Google Scholar
  • 9. Ferziger, J.H. , Peric, M. (1996). Computational Methods for Fluid Dynamics. Berlin, Germany:Springer Google Scholar
  • 10. Gopalan, S. , Katz, J. (2000). ‘Flow structure and modeling issues in the closure region of attached cavitation’. Physics of Fluids. 12, 895-911 Google Scholar
  • 11. He, Y. , Shen, Z. (2012). ‘Experimental research on cavitation erosion detection based on acoustic emission technique’. 30th European Conference on Acoustic Emission Testing & 7th International Conference on Acoustic Emission, 12–15 September, University of Granada Google Scholar
  • 12. Lamloumi, H. , Kanfoudi, H. , Zgolli, R. (2013). ‘Simulation study and three-dimensional numerical flow in a centrifugal pump’. International Journal of Thermal Technologies. 2, 4, 209-215 Google Scholar
  • 13. Kanfoudi, H. , Zgolli, R. (2011). ‘A numerical model to simulate the cavitating flows’. International Journal of Modeling, Simulation, and Scientific Computing. 2, 3, Google Scholar
  • 14. Leroux, J.B. , Astolfi, J.A. , Billard, J.Y. (2003). ‘Experimental study of unsteady and unstable partial cavitation’. 9éme journée de l’hydrodynamique. Google Scholar
  • 15. Merkle, C.L. , Feng, J.Z. , Buelow, P.E.O. (1998). ‘Computational modeling of the dynamics of sheet cavitation’. Proceedings of 3rd International Symposium on Cavitation. Grenoble Google Scholar
  • 16. Reboud, J.L. , Stutz, B. , Coutier, O. (1998). ‘Two phase flow structure of cavitation experiment and modeling of unsteady effects’. Proc. of the 3rd. Grenoble. Franc Google Scholar
  • 17. Sauer, J. , Schnerr, G.H. (2000). ‘Unsteady cavitating flow – a new cavitation model based on a modified front capturing method nd bubble dynamics’. Proceedings of 2000 ASME Fluid Engineering Summer Conference. ASME, Boston, MA Google Scholar
  • 18. Senocak, I. , Shyy, W. (2001). ‘Numerical simulation of turbulent flows with sheet cavitation’. Cav2001 Proc. 4th International Symposium on Cavitation. Google Scholar
  • 19. Senocak, I. , Shyy, W. (2004). ‘Interfacial dynamics-based modeling of turbulent cavitating flows. Part 1: model development and steady-state computations’. Numerical Methods in Fluids. 44, 975-995 Google Scholar
  • 20. Shah, Y.T. , Pandit, A.B. , Moholkar, V.S. (1999). Cavitation Reaction Engineering. Bombay, India:Kluwer Academic/Plenum Publishers, Springer Google Scholar
  • 21. Spalart, P.R. , Shur, M. (1997). ‘On the sensitization of turbulence models torotation and curvature’. Aerospace Science and Technology. 5, 5, 294-302 Google Scholar
  • 22. Stutz, B. , Reboud, J.L. (1997). ‘Two-phase flow structure of sheet cavitation’. Physics of Fluids. 9, 12, 3678-3786 Google Scholar
  • 23. Yuan, W. , Sauer, J. , Schnerr, G. (2001). ‘Modeling and computation of unsteady cavitation flows in injection nozzles’. Mec. Ind.. 2, 5, 383-394 Google Scholar