Skip to main content
No Access

Characterisation of water-oil drainage process through a reservoir rock sample by digital core analysis

Published Online:pp 399-416

Oil-water relative permeability and capillary pressure of a water-wet digital core are computed using the finite-volume/volume of fluid method and mimicking traditional laboratory steady-state experiments carried out on a water saturated sample. Commercial software is used for immiscible multiphase fluid flow simulations, carried out on a low-cost multicore workstation, and the porescale data are upscaled to derive relative permeability and capillary pressure curves as function of water saturation. The digital sample is obtained by high resolution X-ray computed tomography scanning.

Keywords

relative permeability, digital rock, pore-scale simulation, two-phase flow, steady-state, drainage process, water-oil system, volume of fluid

References

  • 1. () Google Scholar
  • 2. S. Akin, '‘Estimation of fracture relative permeabilities from unsteady state corefloods’' J. Petrol. Sci. Eng. (2001) Google Scholar
  • 3. C.H. Arns, M.A. Knackstedt, W. Val Pinczewski, N.S. Martys, '‘Virtual permeametry on microtomographic images’' J. Petrol. Sci. Eng. (2004) Google Scholar
  • 4. J. Bear, Dynamics of Fluids in Porous Media (1972) Google Scholar
  • 5. R.G. Bentsen, J. Anlie, '‘Using parameter estimation techniques to convert centrifuge data into a capillary pressure curve’' Trans. AIME (1977) Google Scholar
  • 6. P.L. Bhatnagar, E.P. Gross, M. Krook, '‘A model for collision processes in gases. I. Small amplitude processes in charged and neutral one-component systems’' Physical Review (1954) Google Scholar
  • 7. J.U. Brackbill, D.B. Kothe, C. Zemach, '‘A continuum method for modeling surface tension’' J. Comp. Phys. (1992) Google Scholar
  • 8. R. Brooks, A.T. Corey, '‘Properties of porous media affecting fluid flow’' Journal of the Irrigation and Drainage Division, Proceedings of the American Society of Civil Engineers (1996) Google Scholar
  • 9. S.E. Buckley, M.C. Leverett, '‘Mechanism of fluid displacement in sands’' Trans. AIME (1942) Google Scholar
  • 10. R.L. Christiansen, Multiphase Flow through Porous Media (2008) Google Scholar
  • 11. M.E. Coles, R.D. Hazlett, P. Spanne, W.E. Soll, E.L. Muegge, K.W. Jones, '‘Pore level imaging of fluid transport using synchrotron X-ray microtomography’' J. Pet. Sci. Tech. (1998) Google Scholar
  • 12. () Google Scholar
  • 13. D. Crandall, R.P. Warzinski, W.K. O’Connor, '‘Examining how CO2 displaces brine at the pore level’' Proceedings of the International Society of Porous Media 2012 Annual Meeting (2012a) Google Scholar
  • 14. D. Crandall, R.P. Warzinski, W.K. O’Connor, A.M. Kabir, G. Bromhal, '‘Pore scale CO2 displacement in sandstone with comparison to core scale dynamics’' Proceedings of the 12th AIChE Annual Meeting (2012b) Google Scholar
  • 15. P.A. Cundall, O.D.L. Strack, '‘Discrete numerical model for granular assemblies’' Geotechnique (1979) Google Scholar
  • 16. T.A. Dewers, J. Heath, R. Ewy, L. Duranti, '‘Three-dimensional pore networks and transport properties of a shale gas formation determined from focused ion beam serial imaging’' International Journal of Oil, Gas and Coal Technology (2012) Google Scholar
  • 17. P. Egerman, J.M. Lombard, P. Bretonnier, '‘A fast and accurate method to measure threshold capillary pressure of caprocks under representative conditions’' (2006) Google Scholar
  • 18. J.H. Ferziger, M. Perić, Computational Methods for Fluid Dynamics (2001) Google Scholar
  • 19. () Google Scholar
  • 20. O. Gerbaux, F. Buyens, V.V. Mourzenko, A. Memponteil, A. Vabre, J-F. Thovert, P.M. Adler, '‘Transport properties of real metallic foams’' Journal of Colloid and Interface Science (2010) Google Scholar
  • 21. A. Gunstensen, D.H. Rothman, S. Zaleski, G. Zanetti, '‘A lattice-Boltzmann model of immiscible fluids’' Physical Review A (1991) Google Scholar
  • 22. R.D. Hazlett, S.Y. Chen, W.E. Soll, '‘Wettability and rate effects on immiscible displacement: lattice Boltzmann simulation in microtomographic images of reservoir rocks’' J. Petrol. Sci. Eng. (1998) Google Scholar
  • 23. R. Hilfer, '‘Review on scale dependent characterization of the microstructure of porous media’' Transp. Porous Media (2002) Google Scholar
  • 24. S. Iglauer, S. Favretto, G. Spinelli, G. Schena, M.J. Blunt, '‘X-ray tomography measurements of power-law cluster size distributions for the nonwetting phase in sandstones’' Phys. Rev. E (2010) Google Scholar
  • 25. Z.T. Karpyn, '‘Special issue on pore-scale flow and transport processesin petroleum reservoirs’' International Journal of Oil, Gas and Coal Technology (2012) Google Scholar
  • 26. E.F. Johnson, D.P. Bossler, V.O. Naumann, '‘Calculation of relative permeability from displacement experiments’' Trans. AIME (1959) Google Scholar
  • 27. M. Josh, L. Esteban, C. Delle Piane, J. Sarout, D.N. Dewhurst, M.B. Clennell, '‘Laboratory characterisation of shale properties’' J. Petrol. Sci. Eng. (2012) Google Scholar
  • 28. T. Kanita, S. Forest, I. Gallieta, V. Mounourya, D. Jeulina, '‘Determination of the size of the representative volume element for random composites: statistical and numerical approach’' Int. J. Solids Struct. (2003) Google Scholar
  • 29. D. Loeve, F. Wilschut, R.H. Hanea, J.G. Maas, P.M.O. van Hooff, P.J. van den Hoek, S.G. Douma, J.F.M. Van Doren, '‘Simultaneous determination of relative permeability and capillary pressure curves by assisted history matching several SCAL experiments’' (2011) Google Scholar
  • 30. A.G. Loomis, D.C. Crowell, '‘Relative permeability studies: gasoil and water-oil systems’' USBM Bulletin (1962) Google Scholar
  • 31. S.K. Matthï, S. Geiger, S.G. Roberts, A. Paluszny, M. Belayneh, A. Burri, A. Mezentsev, H. Lu, D. Coumou, T. Driesner, C.A. Heinrich, '‘Numerical simulation of multiphase fluid flow in structurally complex reservoirs’' Geological Society London Special Publications (2007) Google Scholar
  • 32. V.H. Nguyen, A.P. Sheppard, M.A. Knackstedt, W. Val Pinczewski, '‘The effect of displacement rate on imbibition relative permeability and residual saturation’' J. Petrol. Sci. Eng. (2006) Google Scholar
  • 33. B.D. Nichols, C.W. Hirt, '‘Methods for calculating multi-dimensional, transient free surface flows past bodies’' (1975) Google Scholar
  • 34. B.D. Nichols, C.W. Hirt, '‘Volume of fluid (VOF) method for the dynamics of free boundaries’' J. Comp. Phys. (1981) Google Scholar
  • 35. () Google Scholar
  • 36. A. Papafotiou, R. Helmig, J. Schaap, P. Lehman, '‘From the pore scale to the lab scale: 3-D lab experiment and numerical simulation of drainage in heterogeneous porous media’' Advances in Water Resources (2008) Google Scholar
  • 37. M. Piller, G. Schena, M. Nolich, S. Favretto, F. Radaelli, E. Rossi, '‘Analysis of hydraulic permeability in porous media: from high resolution X-ray tomography to direct numerical simulation’' Transport in Porous Media (2009) Google Scholar
  • 38. M. Prodanović, J.T. Holder, S.L. Bryant, '‘Pore scale coupling of fluid displacement and unconsolidated sediment mechanics’' International Journal of Oil, Gas and Coal Technology (2012) Google Scholar
  • 39. () Google Scholar
  • 40. G. Schena, S. Favretto, '‘Pore space network characterization with sub-voxel definition’' Transport in Porous Media (2007) Google Scholar
  • 41. S. Succi, The Lattice Boltzmann Equation for Fluid Dynamics and Beyond (2001) Google Scholar
  • 42. H. Tang, L.C. Wrobel, Z. Fan, '‘Tracking of immiscible interfaces in multiple-material mixing processes’' Comput. Mater. Science (2004) Google Scholar
  • 43. Z. Tavassoli, J.N. Carter, P.R. King, '‘Analysis of history matching errors’' Computational Geosciences (2005) Google Scholar
  • 44. D. Tiab, E.C. Donaldson, Petrophysics: Theory and Practice of Measuring Reservoir Rock and Fluid Transport Properties (2004) Google Scholar
  • 45. J. Toth, T. Bodi, P. Szucs, F. Civan, '‘Convenient formulae for determination of relative permeability from unsteady-state fluid displacements in core plugs’' J. Petrol. Sci. Eng. (2002) Google Scholar
  • 46. S. Wolfram, '‘Cellular automaton fluids 1: basic theory’' Journal of Statistical Physics (1986) Google Scholar
  • 47. Y. Zaretskiy, S. Geiger, K. Sorbie, '‘Direct numerical simulation of pore-scale reactive transport: applications to wettability alteration during two-phase flow’' International Journal of Oil, Gas and Coal Technology (2012) Google Scholar