Skip to main content
No Access

Effect of trap depth and interfacial energy barrier on charge transport in inverted organic solar cells employing nanostructured ZnO as electron buffer layer

Published Online:pp 322-332https://doi.org/10.1504/IJNT.2014.059833

Inverted organic solar cells with device structure ITO/ZnO/poly (3-hexylthiophene) (P3HT):[

Keywords

zinc oxide, trap depth, temperature dependence, electron selective layer, solution processed, charge transport.

References

  • 1. P. Kumar, S. Chand, '‘Recent progress and future aspects of organic solar cells’' Prog. Photovoltaics Res. Appl. 20 4 (2011): 377-S. Chand‘Recent progress and future aspects of organic solar cells’Prog. Photovoltaics Res. Appl.201120377Google Scholar
  • 2. S.K. Hau, H-L. Yip, A.K.Y. Jen, '‘A review on the development of the inverted polymer solar cell architecture’' Polym. Rev. 50 4 (2010): 474-A.K.Y. Jen‘A review on the development of the inverted polymer solar cell architecture’Polym. Rev.201050474Google Scholar
  • 3. Y-H. Lin, P-C. Yang, J-S. Huang, G-D. Huang, I-J. Wang, W-H. Wu, M-Y. Lin, W-F. Su, C-F. Lin, '‘High-efficiency inverted polymer solar cells with solution-processed metal oxides’' Sol. Energy Mater. Sol. Cells 95 8 (2011): 2511-C-F. Lin‘High-efficiency inverted polymer solar cells with solution-processed metal oxides’Sol. Energy Mater. Sol. Cells2011952511Google Scholar
  • 4. R. Po, C. Carbonera, A. Bernardi, N. Camaioni, '‘The role of buffer layers in polymer solar cells’' Energy Environ. Sci. 4 2 (2011): 285-N. Camaioni‘The role of buffer layers in polymer solar cells’Energy Environ. Sci.20114285Google Scholar
  • 5. E.L. Ratcliff, B. Zacher, N.R. Armstrong, '‘Selective interlayers and contacts in organic photovoltaic cells’' J. Phys. Chem. Lett. 2 11 (2011): 1337-N.R. Armstrong‘Selective interlayers and contacts in organic photovoltaic cells’J. Phys. Chem. Lett.201121337Google Scholar
  • 6. Z. Hu, J. Zhang, Y. Liu, Z. Hao, X. Zhang, Y. Zhao, '‘Influence of ZnO interlayer on the performance of inverted organic photovoltaic device’' Sol. Energy Mater. Sol. Cells 95 8 (2011): 2126-Y. Zhao‘Influence of ZnO interlayer on the performance of inverted organic photovoltaic device’Sol. Energy Mater. Sol. Cells2011952126Google Scholar
  • 7. Y-J. Kang, K. Lim, S. Jung, D-G. Kim, J-K. Kim, C-S. Kim, S.H. Kim, J-W. Kang, '‘Spray-coated ZnO electron transport layer for air-stable inverted organic solar cells’' Sol. Energy Mater. Sol. Cells 96 (2012): 137-J-W. Kang‘Spray-coated ZnO electron transport layer for air-stable inverted organic solar cells’Sol. Energy Mater. Sol. Cells201296137Google Scholar
  • 8. S. Bai, Z. Wu, X. Xu, Y. Jin, B. Sun, X. Guo, S. He, X. Wang, Z. Ye, H. Wei, X. Han, W. Ma, '‘Inverted organic solar cells based on aqueous processed ZnO interlayers at low temperature’' Appl. Phys. Lett. 100 20 (2012): 203906-W. Ma‘Inverted organic solar cells based on aqueous processed ZnO interlayers at low temperature’Appl. Phys. Lett.2012100203906Google Scholar
  • 9. S. Hau, H-L. Yip, A. Jen, '‘A review on the development of the inverted polymer solar cell architecture’' Polym. Rev. 50 (2010): 474-A. Jen‘A review on the development of the inverted polymer solar cell architecture’Polym. Rev.201050474Google Scholar
  • 10. A.K.K. Kyaw, X.W. Sun, C.Y. Jiang, G.Q. Lo, D.W. Zhao, D.L. Kwong, '‘An inverted organic solar cell employing a sol-gel derived ZnO electron selective layer and thermal evaporated MoO3 hole selective layer’' Appl. Phys. Lett. 93 22 (2008)D.L. Kwong‘An inverted organic solar cell employing a sol-gel derived ZnO electron selective layer and thermal evaporated MoO3 hole selective layer’Appl. Phys. Lett.200893Google Scholar
  • 11. D.Y. Kim, J. Subbiah, G. Sarasqueta, F. So, H. Ding, Y. Gao, '‘The effect of molybdenum oxide interlayer on organic photovoltaic cells’' Appl. Phys. Lett. 95 9 (2009): 093304-Y. Gao‘The effect of molybdenum oxide interlayer on organic photovoltaic cells’Appl. Phys. Lett.200995093304Google Scholar
  • 12. H. Bässler, '‘Charge transport in disordered organic photoconductors a monte carlo simulation study’' Phys. Status Solidi B 175 1 (1993): 15-56H. Bässler‘Charge transport in disordered organic photoconductors a monte carlo simulation study’Phys. Status Solidi B19931751556Google Scholar
  • 13. V.D. Mihailetchi, J.K.J. van Duren, P.W.M. Blom, J.C. Hummelen, R.a.J. Janssen, J.M. Kroon, M.T. Rispens, W.J.H. Verhees, M.M. Wienk, '‘Electron Transport in a Methanofullerene’' Adv. Funct. Mater. 13 (2003): 43-M.M. Wienk‘Electron Transport in a Methanofullerene’Adv. Funct. Mater.20031343Google Scholar
  • 14. H. Antoniadis, L.J. Rothberg, F. Papadimitrakopoulos, M. Yan, M.E. Galvin, M.A. Abkowitz, '‘Enhanced carrier photogeneration by defects in conjugated polymers and its mechanism’' Phys. Rev. B 50 20 (1994): 14911-M.A. Abkowitz‘Enhanced carrier photogeneration by defects in conjugated polymers and its mechanism’Phys. Rev. B19945014911Google Scholar
  • 15. I. Riedel, J. Parisi, V. Dyakonov, L. Lutsen, D. Vanderzande, J.C. Hummelen, '‘Effect of temperature and illumination on the electrical characteristics of polymer-fullerene bulk-heterojunction solar cells’' Adv. Funct. Mater. 14 1 (2004): 38-J.C. Hummelen‘Effect of temperature and illumination on the electrical characteristics of polymer-fullerene bulk-heterojunction solar cells’Adv. Funct. Mater.20041438Google Scholar
  • 16. M. Kemerink, J.M. Kramer, H.H.P. Gommans, R.a.J. Janssen, '‘Temperature-dependent built-in potential in organic semiconductor devices’' Appl. Phys. Lett. 88 19 (2006): 192108-R.a.J. Janssen‘Temperature-dependent built-in potential in organic semiconductor devices’Appl. Phys. Lett.200688192108Google Scholar
  • 17. Y. Shen, A.R. Hosseini, M.H. Wong, G.G. Malliaras, '‘How to make ohmic contacts to organic semiconductors’' ChemPhysChem 5 1 (2004): 16-G.G. Malliaras‘How to make ohmic contacts to organic semiconductors’ChemPhysChem2004516Google Scholar
  • 18. N.K. Elumalai, A. Saha, V. Chellapan, J. Rajan, J. Zhang, S. Ramakrishna, '‘Enhancing the stability of polymer solar cells by improving the conductivity of the nanostructured MoO3 hole-transport layer’' PCCP 15 (2013): 6831-6841S. Ramakrishna‘Enhancing the stability of polymer solar cells by improving the conductivity of the nanostructured MoO3 hole-transport layer’PCCP20131568316841Google Scholar
  • 19. P.P. Boix, J. Ajuria, I. Etxebarria, R. Pacios, '‘Role of ZnO electron-selective layers in regular and inverted bulk heterojunction solar cells’' J. Phys. 2 (2011): 407-411R. Pacios‘Role of ZnO electron-selective layers in regular and inverted bulk heterojunction solar cells’J. Phys.20112407411Google Scholar