Abstract
Application of atomic force microscopes (AFMs) in production processes for nanometrology and nanomanufacturing is still hampered by the slow operation speed, by the low level of automation, and by insufficient control over production parameters for material deposition. This contribution discusses some recent development to improve the speed of AFMs by means of mechatronic system integration to improve the scanning speed and the bandwidth for controlling the probe-sample interaction, as well as advances from MEMS to functionalise AFM-probes for selective measurements and dip-pen nanolithography. The improved performance and functionality of the resulting prototype AFMs will enable better use of AFM technology in nanomanufacturing.
Keywords
References
- 1. (1990). ‘New scanning tunneling microscopy tip for measuring surface topography’. J. Vac. Sci. Technol. A. 8, 1, 429-433 Google Scholar
- 2. (2001). ‘Atomic force microscope for planetary applications’. Sensors and Actuators A. 91, 3, 321-325 Google Scholar
- 3. (2003). ‘Symmetrically arranged quartz tuning fork with soft cantilever for intermittent contact mode atomic force microscopy’. Review of Scientific Instruments. 74, 1, 112-117 Google Scholar
- 4. (1991). ‘Frequency modulation detection using high-Q cantilevers for enhanced force microscope sensitivity’. Journal of Applied Physics. 69, 2, 668-673 Google Scholar
- 5. (1990). ‘Microfabrication of cantilever styli for the atomic force microscope’. J. Vac. Sci. Technol. A. 8, 4, 3386-3396 Google Scholar
- 6. (2003). ‘Sub-5-nm-spatial resolution in scanning spreading resistance microscopy using full-diamond tips’. Appl. Phys. Lett.. 82, 11, 1724 Google Scholar
- 7. (2008). ‘Control techniques in high-speed atomic force microscopy’. Proceedings of the American Control Conference. 1–12, 3194-3200 Google Scholar
- 8. (2001). ‘A high-speed atomic force microscope for studying biological macromolecules’. Proc. Natl. Acad. Sci.. 98, 22, 12468-12472 Google Scholar
- 9. (2005). ‘6 nm half-pitch lines and 0.04 µm2 static random access memory patterns by nanoimprint lithography’. Nanotechnology. 16, 8, 1058-1061 Google Scholar
- 10. (1997). ‘Atomic force microscope tip-induced local oxidation of silicon: kinetics, mechanism and nanofabrication’. Applied Physics Letters. 71, 2, 285-287 Google Scholar
- 11. (2009). ‘Optical antennas’. Advances in Optics and Photonics. 1, 3, 438-483 Google Scholar
- 12. (2007). ‘High-performance control of piezoelectric tube scanners’. IEEE Transactions on Control Systems Technology. 15, 5, 853-5866 Google Scholar
- 13. (1986). ‘Single-tube threedimensional-dimensional scanner for scanning tunneling microscopy’. Rev. Sci. Instrum.. 57, 8, 1688-1689 Google Scholar
- 14. (1986). ‘Atomic force microscope’. Phys. Rev. Lett.. 56, 9, 930-933 Google Scholar
- 15. (2008). Tip Functionalization: Applications to Chemical Force Spectroscopy in ‘Handbook of Molecular Force Spectroscopy’. New York:Springer , s.l. Google Scholar
- 16. (2011). ‘Compensator design for improved counterbalancing in high speed atomic force microscopy’. Review of Scientific Instruments. 82, 11, 113712 Google Scholar
- 17. (2009). ‘A comparison of control architectures for atomic force microscopes’. Asian Journal of Control. 11, 2, 175-181 Google Scholar
- 18. (2000). ‘Nano-oxidation of silicon surfaces by noncontact atomic-force microscopy: size dependence on voltage and pulse duration’. Applied Physics Letters. 76, 13, 3427-3429 Google Scholar
- 19. (2002). ‘Comparison between dynamic plowing lithography and nanoindentation methods’. Journal of Applied Physics. 91, 1, 506-512 Google Scholar
- 20. (2001). ‘First lithographic results from the extreme ultraviolet engineering test stand’. Journal of Vacuum Science and Technology B. 19, 6, 2389 Google Scholar
- 21. (2001). ‘Scanning hall probe microscopy on an atomic force microscope tip’. J. Vac. Sci. Technol. A. 19, 1769, Google Scholar
- 22. (1999). ‘Terabit-per-square-inch data storage with the atomic force microscope’. Applied Physics Letters. 75, 22, 3566-3568 Google Scholar
- 23. , Volz, S. (2007). ‘Scanning thermal microscopy’. Microscale and Nanoscale Heat Transfer, Series: Topics in Applied Physics. 107, Berlin Heidelberg:Springer , 181-238 Google Scholar
- 24. (2001). ‘Creep, hysteresis and vibration compensation for piezoactuators: atomic force microscopy application’. ASME J. Dyn. Syst., Meas., Control. 123, 1, 35-43 Google Scholar
- 25. (2004). ‘Current, charge and capacitance during scanning probe oxidation of silicon. I. Maximum charge density and lateral diffusion’. Journal of Applied Physics. 96, 4, 2386-2392 Google Scholar
- 26. (2003). ‘Nanomanipulation by atomic force microscopy of carbon nanotubes on a nanostructured surface’. Surface Science. 543, 1–3, 57-62 Google Scholar
- 27. (2004a). ‘An AFM-based device for in-situ characterization of nano-wear’. Proceedings 17th MEMS Conference. 181-184 Google Scholar
- 28. (2004b). ‘Micromachined foutain pen for atomic force microscope-based nanopatterning’. Applied physics Letters. 85, 22, 5361-5363 Google Scholar
- 29. (2002). ‘Direct patterning of modified oligonucleotides on metals and insulators by Dip-Pen Nanolithography’. Science. 296, 5574, 1836-1838 Google Scholar
- 30. (2007). ‘A survey of control issues in nanopositioning’. IEEE Trans. Control Syst. Technol. 15, 5, 802-823 Google Scholar
- 31. (2010). ‘MEMS-based high speed scanning probe microscopy’. Review of Scientific Instruments. 81, 4, 043702 Google Scholar
- 32. (1989). ‘Imaging crystals, polymers and processes in water with the atomic force microscope’. Science. 243, 4898, 1586 Google Scholar
- 33. (2006). ‘Novel AFM nanoprobes’. in Applied scanning Probe Methods. Berlin Heidelberg:Springer , 77-134 Google Scholar
- 34. (2006). ‘Control of droplet size in liquid nanodispensing’. Nanoletters. 6, 10, 2368-2374 Google Scholar
- 35. (2006). ‘Components for high-speed atomic force microscopy’. Ultramicroscopy. 106, 8–9, 881-887 Google Scholar
- 36. (2006). ‘Sensorless vibration suppression and scan compensation for piezoelectric tube nanopositioners’. IEEE Trans. Contr. Syst. Technol.. 14, 1, 33-44 Google Scholar
- 37. (2010). ‘A new method for robust damping and tracking control of scanning probe microscope positioning stages’. IEEE Transactions on Nanotechnology. 9, 4, 438-448 Google Scholar
- 38. (2011). ‘Dual-stage vertical feedback for high-speed scanning probe microscopy’. IEEE Transactions on Control Systems Technology. 19, 1, 156-165 Google Scholar
- 39. (1994). ‘Adhesion forces between individual ligand-receptor pairs’. Science. 264, 5157, 415 Google Scholar
- 40. (1994). ‘Functional group imaging by chemical force microscopy’. Science. 265, 5181, 2071 Google Scholar
- 41. (2003). ‘Nanopatterning of ‘Hard’ magnetic nanostrucutres via Dip-Pen nanolithography and a sol-based ink’. Nano Letters. 3, 6, 757-760 Google Scholar
- 42. (2008). ‘High resonance frequency force microscope scanner using inertia balance support’. Applied Physics Letters. 92, 24, 243119 Google Scholar
- 43. (1999). ‘Patterning of silicon surfaces with noncontact atomic force microscopy: field-induced formation of nanometer-size water bridges’. Journal of Applied Physics. 86, 4, 1898-1903 Google Scholar
- 44. (2006). ‘Nano-chemistry and scanning probe nanolithography’. Chemical Society Review. 35, 1, 29-38 Google Scholar
- 45. (2002). ‘Development of an atomic force microscope and measurement concepts for characterizing Martian dust and soil particles’. Switzerland:Univ. of Neuchâtel , PhD Thesis, available at http://infoscience.epfl.ch/record/138267/files/These_GautschS.pdf?ln=enversion=1 Google Scholar
- 46. (1995). ‘Atomic force microscope as a tool for metal surface modifications’. Journal of Vacuum Science and Technology B. 13, 3, 1247-1251 Google Scholar
- 47. (2006). ‘Characterization of microfabricated probes for combined atomic, force and high-resolution scanning electrochemical microscopy’. Anal. Chem.. 78, 15, 5436-5442 Google Scholar
- 48. (2006). ‘Applied physics. High-speed atomic force microscopy’. Science. 314, 5799, 601 Google Scholar
- 49. (2000). Appl. Phys. Lett.. 76, 12, 1603 Google Scholar
- 50. (2008). ‘Microscopy capabilities of the microscopy, electrochemistry and conductivity analyzer’. Jour. Geophysical Research. 113, E00A221-28 Google Scholar
- 51. (1997). ‘Semiconductor quantum point contact fabricated by lithography with an atomic force microscope’. Applied Physics Letters. 71, 18, 2689 Google Scholar
- 52. (2011a). ‘Electroless depositon and structuring of silver electrodes in closed microfluidic capillaries’. Journal of Microelectromechanical Systems. 20, 2, 451-459 Google Scholar
- 53. (2011b). ‘Low voltage electroosmotic pumping for high density integration into microfabricated fluidic systems’. Microfluid Nanofluid. 10, 6, 1317-1332 Google Scholar
- 54. (2000). ‘A nanoplotter with both parallel and serial writing capabilities’. Science. 288, 5472, 1808-1811 Google Scholar
- 55. (2005). ‘Generic fabrication technology for transparent and suspended microfluidic and nanofluidic channels’. Proceedings 13th Transducers Conference. 1191-1194 Google Scholar
- 56. (2008). ‘Polymer pen lithography’. Science. 321, 5896, 1658-1660 Google Scholar
- 57. (2001). ‘Self-assembly of ink molecules in dip-pen nanolithography: a diffusion model’. Journal of Chemical Physics. 115, 6, 2721-2729 Google Scholar
- 58. (1995). ‘Deposition of organic material by the tip of a scanning force microscope’. Langmuir. 11, 4, 1061-1064 Google Scholar
- 59. (2006). ‘Highly tunable, high-throughput nanolithography based on strained regioregular conducting polymer films’. Applied Physical Letter. 89, 1, 013119 Google Scholar
- 60. (2008). ‘Direct delivery and submicrometer patterning of DNA by a nanofountain probe’. Advanced Materials. 20, 2, 330-334 Google Scholar
- 61. (2004). ‘Rigid design of fast scanning probe microscopes using finite element analysis’. Ultramicroscopy. 100, 3–4, 259-265 Google Scholar
- 62. (1999). ‘Modeling and predicition of sub-micrometer heat transfer during thermomechanical data storage’. Proceedings ASME MEMS. 1, 583-588 Google Scholar
- 63. (1999). ‘Nanolithography with an atomic force microscope by means of verctor-scan controlled dynamic plowing’. Journal of Applied Physics. 85, 7, 3897-3903 Google Scholar
- 64. (2005). ‘Active damping of the scanner for high-speed atomic force microscopy’. Review of Scientific Instruments. 76, 5, 053708 Google Scholar
- 65. (2006). ‘Dynamic proportional-integral-differential controller for high-speed atomic force microscopy’. Review of Scientific Instruments. 77, 8, 083704 Google Scholar
- 66. (2010). ‘Active damping of piezoelectric tube scanner using self-sensing piezo actuation’. Mechatronics. 20, 6, 656-665 Google Scholar
- 67. (2011). ‘Towards integrated design of a robust feedback controller and topography estimator for atomic force microscopy’. Proceedings of the 18th IFAC World Congress, 2011. Google Scholar
- 68. (1999). ‘Plowing on the sub-50 nm scale: nanolithography using scanning force microscopy’. Advanced Materials. 11, 17, 1473-1475 Google Scholar
- 69. (2009). Nature Nanontech.. 4, 9, 586-591 Google Scholar
- 70. (2006). ‘Design of hysteresis-compensating iterative learning control for piezo-positioners: application in atomic force microscopes’. Mechatronics. 16, 3–4, 141 Google Scholar
- 71. (2000). ‘Frictional properties of titanium carbide, titanium nitride and vanadium carbide: measurement of a compositional dependence with atomic force microscopy’. J. Vac. Sci. Technol. B. 18, 1, 69-75 Google Scholar
- 72. (2003). ‘Protein nanostructures formed via direct-write dip-pen nanolithography’. Journal of the American Chemical Society. 125, 19, 5588-5589 Google Scholar
- 73. (2003). ‘Direct-write dip-pen nanolithography of proteins on modified silicon oxide surfaces’. Angewandte Chemie. 42, 20, 2309-2312 Google Scholar
- 74. (2007). ‘On-line sensing and display in atomic force microscope based nanorobotic manipulation’. Advanced Intelligent Mechatronics. 1-6 Google Scholar
- 75. (2011). ‘Highly reproducible nanolithography by dynamic plough of an atomic-force microscope tip and thermal-annealing treatment’. IEEE Transactions on Nanotechnology. 10, 1, 53-58 Google Scholar
- 76. (1999). ‘5×5 2D AFM cantilever arrays a first step towards a Terabit storage device’. Sensors and Actuators A. 73, 1, 89-94 Google Scholar
- 77. (1992). ‘Thermomechanical writing with an atomic force microscope tip’. Applied Physics Letters. 61, 8, 1003-1005 Google Scholar
- 78. (2003). ‘Nanoscale dispensing of liquids through cantilevered probes’. Microelectronic Engineering. 67–68, 644-650 Google Scholar
- 79. (2004). ‘Nanodispenser for attoliter volume deposition using atomic force microscopy probes modified by focused-ion-beam milling’. Applied Physics Letters. 85, 25, 6260-6262 Google Scholar
- 80. (2006). ‘Local modification of micellar layers using nanoscale dispensing’. Microelectronic Engineering. 83, 4–9, 1509-1512 Google Scholar
- 81. (2009a). ‘FluidFM: combining atomic force microscopy and nanofluidics in a universal liquid delivery system for single cell applications and beyond’. Nanoletters. 9, 6, 2501-2507 Google Scholar
- 82. (2009b). ‘Nanoscale dispensing in liquid environment of streptavidin on a biotin-functionalized surface using hollow atomic force microscope probes’. Microelectronic Engineering. 86, 4–6, 1481-1484 Google Scholar
- 83. (1993). ‘Regulation of a microcantilever response by force feedback’. Appl. Phys. Letter. 62, 19, 2334-2346 Google Scholar
- 84. (2004). Scanning Probe Microscopy. Berlin Heidelberg New York:Springer-Verlag Google Scholar
- 85. (1988). ‘Novel optical approach to atomic force microscopy’. Appl. Phys. Lett.. 53, 12, 1045-1047 Google Scholar
- 86. (2006a). ‘A multi-ink linear array of nanofountain probes’. Journal of Micromechanical Systems. 16, 10, 1935-1942 Google Scholar
- 87. (2006b). ‘Design and fabrication of a novel microfluidic nanoprobe’. Journal of Microelectromechanical Systems. 15, 1, 204-212 Google Scholar
- 88. (2005). ‘Carbon nanotube tips for scanning probe microscopy: fabrication and high aspect ratio nanometrology’. Meas. Sci. Technol.. 16, 11, 2138-2146 Google Scholar
- 89. (1991). ‘Kelvin probe force microscopy’. Appl. Phys. Lett.. 58, 25, 2921-2923 Google Scholar
- 90. (2011). ‘Quantification of the dry history of the Martian soil inferred from in situ microscopy’. Geophys. Res. Lett.. 38, L24201 Google Scholar
- 91. (1999). ‘Dip-pen nanolithography’. Science. 283, 5402, 661-663 Google Scholar
- 92. (2002). ‘Electroless nanoparticle film deposition compatible with photolithography, microcontact printing and dip-pen nanolithography patterning technologies’. Nano Letters. 2, 12, 1369-1372 Google Scholar
- 93. (1991). ‘Improved scanning ion-conductance microscope using microfabricated probes’. Rev. Sci. Instrum.. 62, 11, 2634 Google Scholar
- 94. (1997). ‘The simultaneous measurement of elastic, electrostatic and adhesive properties by scanning force microscopy: pulsed-force mode operation’. Meas. Sci. Technol.. 8, 11, 1333-1338 Google Scholar
- 95. (1987). ‘Observation of magnetic forces by the atomic force microscope’. Journal of Applied Physics. 62, 10, 4293-4295 Google Scholar
- 96. (2010). ‘A surface diffusion model for dip pen nanolithography line writing’. Applied Physics Letters. 96, 24, 243105-1-243105-3 Google Scholar
- 97. (2002). ‘High bandwidth nano-positioner: a robust control approach’. Rev. Sci. Instrum.. 73, 9, 3232-3241 Google Scholar
- 98. (2005). ‘Sample-profile estimate for fast atomic force microscopy’. Appl. Phys. Lett.. 87, 5, 053112 Google Scholar
- 99. (1991). Scanning Force Microscopy. New York:Oxford University Press Google Scholar
- 100. (1994). Scanning Force Microscopy. New York:Oxford University Press Google Scholar
- 101. (1994). ‘Fabrication of two-dimensional arrays of nanometer-size clusters with the atomic force microscope’. Applied Physics Letters. 66, 8, 1012-1014 Google Scholar
- 102. (2009). ‘Improving the speed of AFM by mechatronic design and modern control methods’. Technisches Messen. 76, 5, 266-273 Google Scholar
- 103. (2008). ‘Field programmable analog array (FPAA) based control of an atomic force microscope’. Proceedings of the American Control Conference. 1–12, 2690-2695 Google Scholar
- 104. (2004). ‘Identification and openloop tracking control of a piezoelectric tube scanner for high-speed scanning probe microscopy’. IEEE Trans. Contr. Syst. Technol.. 12, 3, 449-454 Google Scholar
- 105. (2001). ‘High performance feedback for fast scanning atomic force microscopes’. Rev. Sci. Instrum.. 72, 8, 3320-3327 Google Scholar
- 106. (2004). ‘Robust two-degree-of-freedom control of an atomic force microscope’. Asian J. of Control. 6, 2, 156-163 Google Scholar
- 107. (2007). ‘Design and modeling of a high-speed AFM-scanner’. IEEE Trans. Contr. Syst. Technol.. 15, 5, 906-915 Google Scholar
- 108. (2008). ‘Design and input-shaping control of a novel scanner for high speed atomic force microscopy’. Mechatronics. 18, 5–6, 282-288 Google Scholar
- 109. (2005). ‘Design methodologies for robust nanopositioning’. IEEE Trans. Control Syst. Technol.. 13, 6, 868-876 Google Scholar
- 110. (2001). ‘Harmonic and power balance tools for tapping-mode AFM’. Journal of Applied Physics. 89, 11, 6473-6480 Google Scholar
- 111. (2000). ‘Controlled pushing of nanoparticles: modeling and experiments’. IEEE/ASME Transactions on Mechantronics. 5, 2, 199-211 Google Scholar
- 112. (2008). ‘Mapper: high throughput maskless lithography’. Proc. SPIE. 6921, 69211P-1-69211P-9 Google Scholar
- 113. (2009). ‘H20 at the Phoenix landing site’. Science. 325, 5936, 58-61 Google Scholar
- 114. (2000). ‘The kinetics and mechanism of scanned probe oxidation’. Applied Physics Letters. 76, 13, 1782-1784 Google Scholar
- 115. (2003). ‘Tuning the interaction forces in tapping mode atomic-force microscopy’. Phys. Rev. B. 68, 8, 085401 Google Scholar
- 116. (2009). ‘Industrial perspectives of AFM control’. Asian Journal of Control. 11, 2, 104-109 Google Scholar
- 117. (2002). ‘Moving beyond molecules: patterning solid-state features via dip-pen nanolithography with sol-based inks’. Journal of the American Chemical Society. 124, 8, 1560-1561 Google Scholar
- 118. (2003). ‘Studies of tip wear processes in tapping mode atomic force microscopy’. Ultramicroscopy. 97, 1–4, 135-144 Google Scholar
- 119. (2005). ‘Atom inlays performed at room temperature using atomic force microscopy’. Nature Materials. 4, 2, 156-159 Google Scholar
- 120. (1999). ‘Dual integrated actuators for extended range high speed atomic force microscopy’. Appl. Phys. Lett.. 75, 11, 1637-1639 Google Scholar
- 121. (2002). ‘Characterization and optimization of scan speed for tapping-mode atomic force microscopy’. Rev. Sci. Instrum.. 73, 8, 2928-2936 Google Scholar
- 122. (2006). ‘Local oxidation of titanium using dynamic-mode tuning-fork probe with microfabricated silicon cantilever’. Japanese Journal of Applied Physics. 45, 3B, 2099-2102 Google Scholar
- 123. (2010). ‘Integration of a fabrication process for an aluminum single-electron transistor and a scanning force probe for tuning-fork-based probe microscopy’. Microelectromechanical Systems. 19, 5, 1088-1097 Google Scholar
- 124. (1994). ‘Feedback control of piezoelectric tube scanners’. Proc. of the 33rd Conf. on Decision and Control. 1826-1831 Google Scholar
- 125. (1998). ‘Atomic force microscope based data storage: track servo and wear study’. Appl. Phys. A. 66, 809-813 Google Scholar
- 126. (1991).
‘Atomic force microscopy using a piezoresistive cantilever, solid-state sensors and actuators’.
International Conference on TRANSDUCERS ‘91 ,San Francisco, USA , 448-451 Google Scholar - 127. (1993). ‘Atomic resolution with an atomic force microscope using piezoresistive detection’. Appl. Phys. Lett.. 62, 8, 834-836 Google Scholar
- 128. (2005). ‘Development of a multi-electron-beam source for sub-10 nm electron beam induced deposition’. Journal of Vacuum Science and Technology B. 23, 6, 2833-2839 Google Scholar
- 129. (2002). ‘The ‘Millipede’ – nanotechnology entering data storage’. IEEE Transactions on Nanotechnology. 1, 1, 39-55 Google Scholar
- 130. (1994). Surface Science. 321, 287-300 Google Scholar
- 131. (1996). ‘Short cantilevers for atomic force microscopy’. Rev. Sci. Instrum.. 67, 10, 3583-3590 Google Scholar
- 132. (1990). ‘Imaging and manipulating molecules on a zeolite surface with an atomic force microscope’. Science. 247, 4948, 1330-1333 Google Scholar
- 133. (2007). ‘Progress in miniaturization of protein arrays – a step forward to high density nano-arrays’. Drug Discovery Today. 12, 19, 813-819 Google Scholar
- 134. (1990). ‘Micromachined silicon sensors for scanning force microscopy’. Vac. Sci. Technol. B. 9, 2, 1353-1357 Google Scholar
- 135. (2006). ‘Nanoscale materials patterning and engineering by atomic force microscopy nanolithography’. Materials Science and Engineering. R54, 1-48 Google Scholar
- 136. (1996). ‘A metrological scanning force microscope’. Precision Eengineering-Journal of the American Society for Precision Engineering. 19, 1, 46-55 Google Scholar
- 137. (2006). ‘Adaptable end effector for atomic force microscopy based nanomanipulation’. IEEE Transactions on Nanotechnology. 5, 6, 628-642 Google Scholar
- 138. (1993). ‘Fracured polymer/silica fiber surface studied by tapping mode atomic force microscopy’. Surf. Sci. Lett.. 290, 1–2, 688-692 Google Scholar
- 139. (2004). ‘Control issues in high-speed afm for biological applications: collagen imaging example’. Asian J. Control. 6, 2, 164-178 Google Scholar