Skip to main content
Skip main navigation
No Access

A new computational method to solve fully fuzzy linear systems for negative coefficient matrix

Published Online:pp 19-32https://doi.org/10.1504/IJMTM.2012.047716

In this paper, new computational methods for solving fully fuzzy linear systems (FFLS) when the coefficient matrix is negative are proposed. The proposed methods are very easy to understand and to apply for solving fully fuzzy linear systems occurring in real life situations. The methods are illustrated by solving numerical examples.

Keywords

fully fuzzy linear systems, FFLS, triangular fuzzy number, row reduced echelon form

References

  • 1. S. Abbasbandy, A. Jafarian, '‘Steepest descent method for system of fuzzy linear equations’' Applied Mathematics and Computation (2006) Google Scholar
  • 2. S. Abbasbandy, R. Ezzati, A. Jafarian, '‘LU decomposition method for solving fuzzy system of linear equations’' Applied Mathematics and Computation (2006) Google Scholar
  • 3. S. Abbasbandy, A. Jafarian, R. Ezzati, '‘Conjugate gradient method for fuzzy symmetric positive-definite system of linear equations’' Applied Mathematics and Computation (2005) Google Scholar
  • 4. T. Allahviranloo, '‘Numerical methods for fuzzy system of linear equations’' Applied Mathematics and Computation (2004a) Google Scholar
  • 5. T. Allahviranloo, '‘Successive overrelaxation iterative method for fuzzy system of linear equations’' Applied Mathematics and Computation (2004b) Google Scholar
  • 6. T. Allahviranloo, '‘The adomian decomposition method for fuzzy system of linear equations’' Applied Mathematics and Computation (2005) Google Scholar
  • 7. T. Allahviranloo, M. Ghanbari, '‘Solving fuzzy linear system by homotopy perturbation method’' International Journal of Computational Cognition (2010) Google Scholar
  • 8. T. Allahviranloo, N. Mikarilvand, N.A. Kiani, R.H. Shabestari, '‘Signed decomposition of fully fuzzy linear systems’' Application and Applied Mathematics (2008) Google Scholar
  • 9. J.J. Buckley, Y. Qu, '‘Solving systems of linear fuzzy equations’' Fuzzy Sets and Systems (1991) Google Scholar
  • 10. M. Dehghan, B. Hashemi, '‘Iterative solution of fuzzy linear systems’' Applied Mathematics and Computation (2006a) Google Scholar
  • 11. M. Dehghan, B. Hashemi, '‘Solution of the fully fuzzy linear system using the decomposition procedure’' Applied Mathematics and Computation (2006b) Google Scholar
  • 12. M. Dehghan, B. Hashemi, M. Ghatee, '‘Computational methods for solving fully fuzzy linear systems’' Applied Mathematics and Computation (2006) Google Scholar
  • 13. M. Dehghan, B. Hashemi, M. Ghatee, '‘Solution of the fully fuzzy linear system using iterative techniques’' Chaos, Solitons and Fractals (2007) Google Scholar
  • 14. D. Dubois, H. Prade, Fuzzy Sets and Systems: Theory and Applications (1980) Google Scholar
  • 15. M. Friedman, M. Ming, A. Kandel, '‘Fuzzy linear systems’' Fuzzy Sets and Systems (1998) Google Scholar
  • 16. M. Friedman, M. Ming, A. Kandel, '‘Duality in fuzzy linear systems’' Fuzzy Sets and Systems (2000) Google Scholar
  • 17. J. Gao, '‘A unified iterative scheme for solving fully fuzzy linear system’' Global Congress on Intelligent Systems (2009) Google Scholar
  • 18. A. Kaufmann, M.M. Gupta, Introduction to Fuzzy Arithmetic: Theory and Applications (1991) Google Scholar
  • 19. A. Kumar, Neetu, A. Bansal, '‘A new method to solve fully fuzzy linear system with trapezoidal fuzzy numbers’' Canadian Journal on Science and Engineering Mathematics (2010) Google Scholar
  • 20. H.K. Liu, '‘On the solution of fully fuzzy linear systems’' World Academy of Sciences, Engineering and Technology I: Mathematical and Computational Science (2010) Google Scholar
  • 21. M. Mosleh, M. Otadi, '‘Regular splitting method for approximating linear system of fuzzy equations’' International Journal of Contemporary Mathematical Sciences (2010) Google Scholar
  • 22. M. Mosleh, S. Abbasbandy, M. Otadi, '‘Full fuzzy linear systems of the form Ax + b = Cx + d ’' Proceedings First Joint Congress on Fuzzy and Intelligent Systems (2007) Google Scholar
  • 23. M. Mosleh, M. Otadi, A. Khanmirzaie, '‘Decomposition method for solving fully fuzzy linear systems’' Iranian Journal of Optimization (2009) Google Scholar
  • 24. S. Muzzioli, H. Reynaerts, '‘Fuzzy linear systems of the form A 1 x + b 1 = A 2 x + b 2 ’' Fuzzy Sets and Systems (2006) Google Scholar
  • 25. S.H. Nasseri, M. Sohrabi, '‘Gram-Schmidt approach for linear system of equations with fuzzy parameters’' The Journal of Mathematics and Computer Science (2010) Google Scholar
  • 26. S.H. Nasseri, F. Zahmatkesh, '‘Huang method for solving fully fuzzy linear system of equations’' The Journal of Mathematics and Computer Science (2010) Google Scholar
  • 27. S.H. Nasseri, M. Matinfar, Z. Kheiri, '‘Greville’s method for the fully fuzzy linear system of equations’' Advances in Fuzzy Sets and Systems (2009) Google Scholar
  • 28. S.H. Nasseri, M. Sohrabi, E. Ardil, '‘Solving fully fuzzy linear systems by use of a certain decomposition of the coefficient matrix’' International Journal of Computational and Mathematical Sciences (2008) Google Scholar
  • 29. X. Sun, S. Guo, '‘Solution to general fuzzy linear system and its necessary and sufficient condition’' Fuzzy Information and Engineering (2009) Google Scholar
  • 30. J.F. Yin, K. Wang, '‘Splitting iterative methods for fuzzy system of linear equations’' Computational Mathematics and Modeling (2009) Google Scholar
  • 31. L.A. Zadeh, '‘Fuzzy sets’' Information and Control (1965) Google Scholar