Skip to main content
Skip main navigation
No Access

A non-thermal route to oxide nanocomposites by mechanochemical redox reactions

Published Online:pp 82-96https://doi.org/10.1504/IJMPT.2014.064039

Chemical reduction-oxidation (redox) processes induced by mechanical treatment represent an important class of solid-state reactions. In the present work, selected examples are presented of the preparation of nanocomposites by mechanochemical redox reactions, starting from simple binary or complex ternary oxides. The important impact of the work, from the methodology point of view, is the application of 57Fe and 119Sn Mössbauer spectroscopies to the study of the mechanically induced formation of Fe- and Sn-containing composites. In addition, the obtained nanocomposites are characterised by X-ray diffraction and transmission electron microscopy. It is demonstrated that the event of mechanically induced redox reactions presents novel opportunities for the non-thermal manipulation of materials and provides a promising field for future fundamental as well as applied research.

Keywords

nanocomposites, non-thermal route, mechanochemistry, high-energy ball milling, redox reactions, oxides, Mössbauer spectroscopy, local structure, X-ray diffraction, XRD, transmission electron microscopy

References

  • 1. Baláž, P. , Takacs, L. , Godočíková, E. , Škorvánek, I. , Kováč, J. , Choi, W.S. (2007). ‘Preparation of nanosized antimony by mechanochemical reduction of antimony sulphide Sb2S3. Journal of Alloys and Compounds. 434–435, 1, 773-775 Google Scholar
  • 2. Begin-Colin, S. , Le Caër, G. , Zandona, M. , Bouzy, E. , Malaman, B. (1995). ‘Influence of the nature of milling media on phase transformations induced by grinding in some oxides’. Journal of Alloys and Compounds. 227, 2, 157-166 Google Scholar
  • 3. Campbell, S.J. , Kaczmarek, W.A. , Wang, G.M. (1995). ‘Mechanochemical transformation of haematite to magnetite’. Nanostructured Materials. 6, 5–8, 735-738 Google Scholar
  • 4. Da Silva, K.L. , Menzel, D. , Feldhoff, A. , Kübel, C. , Bruns, M. , Paesano, A., Jr. , Düvel, A. , Wilkening, M. , Ghafari, M. , Hahn, H. , Litterst, F.J. , Heitjans, P. , Becker, K.D. , Šepelák, V. (2011). ‘Mechanosynthesized BiFeO3 nanoparticles with highly reactive surface and enhanced magnetization’. Journal of Physical Chemistry C. 115, 15, 7209-7217 Google Scholar
  • 5. Ding, J. , Tsuzuki, T. , McCormick, P.G. , Street, R. (1996). ‘Structure and magnetic properties of ultrafine Fe powders by mechanochemical processing’. Journal of Magnetism and Magnetic Materials. 162, 2–3, 271-276 Google Scholar
  • 6. Ge, X. , Li, M.S. , Shen, J.Y. (2001). ‘The reduction of Mg-Fe-O and Mg-Fe-Al-O complex oxides studied by temperature-programmed reduction combined with in situ Mössbauer spectroscopy’. Journal of Solid State Chemistry. 161, 1, 38-44 Google Scholar
  • 7. Goya, G.F. , Rechenberg, H.R. (2000). ‘Mechanosynthesis of intermetallic Fe100-xAlx obtained by reduction of Al/Fe2O3 composite’. Journal of Physics: Condensed Matter. 12, 50, 10579-10590 Google Scholar
  • 8. Goya, G.F. , Rechenberg, H.R. , Jiang, J.Z. (1998). ‘Structural and magnetic properties of ball milled copper ferrite’. Journal of Applied Physics. 84, 2, 1101-1108 Google Scholar
  • 9. Grigoryeva, T.F. , Novakova, A.A. , Kiseleva, T.Y. , Barinova, A.P. , Ancharov, A.I. , Talako, T.L. , Vorsina, I.A. , Becker, K.D. , Šepelák, V. , Tsybulya, S.V. , Bulavchenko, O.A. , Lyakhov, N.Z. (2009). ‘Mechanochemical production of nanocomposites of metal/oxide and intermetallic/oxide systems’. Journal of Physics: Conference Series. 144, 1, 012076-1-012076-4 Google Scholar
  • 10. Iwasaki, T. , Sato, N. , Kosaka, K. , Watano, S. , Yanagida, T. , Kawai, T. (2011). ‘Direct transformation from goethite to magnetite nanoparticles by mechanochemical reduction’. Journal of Alloys and Compounds. 509, 4, L34-L37 Google Scholar
  • 11. Kaczmarek, W.A. , Ninham, B.W. (1994). ‘Preparation of Fe3O4 and γ-Fe2O3 powders by magnetomechanical activation of hematite’. IEEE Transactions on Magnetics. 30, 2, 732-734 Google Scholar
  • 12. Kaczmarek, W.A. , Onyszkiewicz, I. , Ninham, B.W. (1994). ‘Structural and magnetic characteristics of novel method of Fe2O3 Þ Fe3O4 reduction by magnetomechanical activation’. IEEE Transactions on Magnetics. 30, 6, 4725-4727 Google Scholar
  • 13. Kosmac, T. , Courtney, T.H. (1992). ‘Milling and mechanical alloying of inorganic nonmetallics’. Journal of Materials Research. 7, 6, 1519-1525 Google Scholar
  • 14. Lagarec, K. , Rancourt, D.G. (1998). Recoil – Mössbauer Spectral Analysis Software for Windows. Ottawa, ON:University of Ottawa Google Scholar
  • 15. Long, G.J. (1987). Mössbauer Spectroscopy Applied to Inorganic Chemistry. 2, New York:Plenum Press Google Scholar
  • 16. Menil, F. (1985). ‘Systematic trends of the 57Fe Mössbauer isomer shifts in (FeOn) and Fe(Fn) polyhedra. Evidence of a new correlation between the isomer shift and the inductive effect of the competing bond T-X (®Fe) (where X is O or F and T any element with a formal positive charge’. Journal of Physics and Chemistry of Solids. 46, 7, 763-789 Google Scholar
  • 17. Menzel, M. , Šepelák, V. , Becker, K.D. (2001). ‘Mechanochemical reduction of nickel ferrite’. Solid State Ionics. 141–142, 1, 663-669 Google Scholar
  • 18. Paladino, A.E. (1960). ‘Phase equilibria in the ferrite region of the system FeO-MgO-Fe2O3. Journal of the American Ceramic Society. 43, 4, 183-191 Google Scholar
  • 19. Qian, Y.T. , Kershaw, R. , Dwight, K. , Wold, A. (1983). ‘Hydrogen reduction studies of members of the system MgFe2-xCrxO4. Materials Research Bulletin. 18, 5, 543-548 Google Scholar
  • 20. Šepelák, V. , Becker, K.D. , Bergmann, I. , Suzuki, S. , Indris, S. , Feldhoff, A. , Heitjans, P. , Grey, C.P. (2009). ‘A one-step mechanochemical route to core-shell Ca2SnO4 nanoparticles followed by 119Sn MAS NMR and 119Sn Mössbauer spectroscopy’. Chemistry of Materials. 21, 12, 2518-2424 Google Scholar
  • 21. Šepelák, V. , Becker, S.M. , Bergmann, I. , Indris, S. , Scheuermann, M. , Feldhoff, A. , Kübel, C. , Bruns, M. , Stürzl, N. , Ulrich, A.S. , Ghafari, M. , Hahn, H. , Grey, C.P. , Becker, K.D. , Heitjans, P. (2012a). ‘Nonequilibrium structure of Zn2SnO4 spinel nanoparticles’. Journal of Materials Chemistry. 22, 7, 3117-3126 Google Scholar
  • 22. Šepelák, V. , Myndyk, M. , Fabián, M. , Da Silva, K.L. , Feldhoff, A. , Menzel, D. , Ghafari, M. , Hahn, H. , Heitjans, P. , Becker, K.D. (2012b). ‘Mechanosynthesis of nanocrystalline fayalite, Fe2SiO4. Chemical Communications. 48, 90, 11121-1123 Google Scholar
  • 23. Šepelák, V. , Bergmann, I. , Diekmann, A. , Heitjans, P. , Becker, K.D. (2008). ‘Mechanosynthesis of nanocrystalline iron germinate Fe2GeO4 with a nonequilibrium cation distribution’. Reviews on Advanced Materials Science. 18, 4, 349-352 Google Scholar
  • 24. Šepelák, V. , Bergmann, I. , Feldhoff, A. , Heitjans, P. , Krumeich, F. , Menzel, D. , Litterst, F.J. , Campbell, S.J. , Becker, K.D. (2007). ‘Nanocrystalline nickel ferrite, NiFe2O4: mechanosynthesis, nonequilibrium cation distribution, canted spin arrangement, and magnetic behavior’. Journal of Physical Chemistry C. 111, 13, 5026-5033 Google Scholar
  • 25. Šepelák, V. , Düvel, A. , Wilkening, M. , Becker, K.D. , Heitjans, P. (2013). ‘Mechanochemical reactions and syntheses of oxides’. Chemical Society Reviews. 42, 18, 7507-7520 Google Scholar
  • 26. Šepelák, V. , Feldhoff, A. , Heitjans, P. , Krumeich, F. , Menzel, D. , Litterst, F.J. , Bergmann, I. , Becker, K.D. (2006). ‘Nonequilibrium cation distribution, canted spin arrangement, and enhanced magnetization in nanosized MgFe2O4 prepared by a one-step mechanochemical route’. Chemistry of Materials. 18, 13, 3057-3067 Google Scholar
  • 27. Šepelák, V. , Menzel, M. , Becker, K.D. , Krumeich, F. (2002). ‘Mechanochemical reduction of magnesium ferrite’. Journal of Physical Chemistry B. 106, 26, 6672-6678 Google Scholar
  • 28. Setoudeh, N. , Welham, N.J. (2010). ‘Ball milling induced reduction of SrSO4 by Al’. International Journal of Mineral Processing. 98, 3–4, 214-218 Google Scholar
  • 29. Shi, Y. , Ding, J. (2001). ‘Strong unidirectional anisotropy in mechanically alloyed spinel ferrites’. Journal of Applied Physics. 90, 8, 4078-4084 Google Scholar
  • 30. Shirane, G. , Cox, D.E. , Ruby, S.L. (1962). ‘Mössbauer study of isomer shift, quadrupole interaction, and hyperfine field in several oxides containing Fe57. Physical Review. 125, 4, 1158-1165 Google Scholar
  • 31. Spikerman, J.J. , De Voe, J.R. , Travis, J.C. (1970). ‘Standard reference materials: standards for mössbauer spectroscopy’. NBS Special Report. 260-280 Google Scholar
  • 32. Števulová, N. , Bálintová, M. , Tkáčová, K. (2000). ‘Material and energy interactions between milling bodies, milled particles, and milling environment’. Journal of Materials Synthesis and Processing. 8, 5–6, 265-270 Google Scholar
  • 33. Takacs, L. (1993). ‘Metal-metal oxide systems for nanocomposite formation by reaction milling’. Nanostructured Materials. 2, 3, 241-249 Google Scholar
  • 34. Tokomitsu, K. (1997). ‘Reduction of metal oxides by mechanical alloying method’. Solid State Ionics. 101–103, 1, Part 1, 25-31 Google Scholar
  • 35. Welham, N.J. (1998a). ‘Mechanochemical reduction of FeTiO3 by Si’. Journal of Alloys and Compounds. 274, 1–2, 303-307 Google Scholar
  • 36. Welham, N.J. (1998b). ‘Formation of micronised WC from scheelite (CaWO4)’. Material Science and Engineering: A. 248, 1–2, 230-237 Google Scholar
  • 37. Yang, H. , McCormick, P.G. (1993). ‘Combustion reaction of zinc oxide with magnesium during mechanical alloying’. Journal of Solid State Chemistry. 107, 1, 258-263 Google Scholar
  • 38. Zdujić, M. , Jovalekić, Č. , Karanović, L.j. , Mitrić, M. (1999). ‘The ball milling induced transformation of α-Fe2O3 powder in air and oxygen atmosphere’. Materials Science and Engineering: A. 262, 1–2, 204-213 Google Scholar
  • 39. Zdujić, M. , Jovalekić, Č. , Karanović, Lj. , Mitrić, M. , Poleti, D. , Skala, D. (1998). ‘Mechanochemical treatment of α-Fe2O3 powder in air atmosphere’. Materials Science and Engineering: A. 245, 1, 109-117 Google Scholar