Skip to main content
Skip main navigation
No Access

Predicting the present with Bayesian structural time series

Published Online:pp 4-23https://doi.org/10.1504/IJMMNO.2014.059942

This article describes a system for short term forecasting based on an ensemble prediction that averages over different combinations of predictors. The system combines a structural time series model for the target series with a regression component capturing the contributions of contemporaneous search query data. A spike-and-slab prior on the regression coefficients induces sparsity, dramatically reducing the size of the regression problem. Our system averages over potential contributions from a very large set of models and gives easily digested reports of which coefficients are likely to be important. We illustrate with applications to initial claims for unemployment benefits and to retail sales. Although our exposition focuses on using search engine data to forecast economic time series, the underlying statistical methods can be applied to more general short term forecasting with large numbers of contemporaneous predictors.

Keywords

Bayesian model averaging, Bayesian structural time series models, Markov chain Monte Carlo, economic time series, machine learning, predicting the present, spike and slab priors, state space models

References

  • 1. Banbura, M. , Giannone, D. , Reichlin, L. , Clements, M.P. Hendry, D.F. (2011). ‘Nowcasting’. Oxford Handbook of Economic Forecasting. Oxford:Oxford University Press , Chap. 7 Google Scholar
  • 2. Carter, C.K. , Kohn, R. (1994). ‘On Gibbs sampling for state space models’. Biometrika. 81, 3, 541-553 Google Scholar
  • 3. Chan, J. , Jeliazkov, I. (2009). ‘Efficient simulation and integrated likelihood estimation in state space models’. International Journal of Mathematical Modelling and Numerical Optimisation. 1, 1, 101-120 AbstractGoogle Scholar
  • 4. Chipman, H. , George, E. , McCulloch, R. , Clyde, M. , Foster, D. , Stine, R. (2001). ‘The practical implementation of bayesian model selection’. Lecture Notes-Monograph Series. 65-134 Google Scholar
  • 5. Choi, H. , Varian, H. (2009). Predicting the Present with Google Trends. Google, Tech. rep. Google Scholar
  • 6. Choi, H. , Varian, H. (2012). ‘Predicting the present with Google Trends’. Economic Record. 88, 2-9 Google Scholar
  • 7. Cleveland, R.B. , Cleveland, W.S. , McRae, J.E. , Terpenning, I. (1990). ‘STL: a seasonal-trend decomposition procedure based on loess’. Journal of Official Statistics. 6, 3-73 Google Scholar
  • 8. Cowell, R.G. , Dawid, A.P. , Lauritzen, S.L. , Spiegelhalter, D.J. (1999). Probabilistic Networks and Expert Systems. Springer Google Scholar
  • 9. de Jong, P. , Shepard, N. (1995). ‘The simulation smoother for time series models’. Biometrika. 82, 2, 339-350 Google Scholar
  • 10. Dukic, V. , Polson, N.G. , Lopes, H. (2012). ‘Tracking flu epidemics using Google Flu Trends data and a state-space SEIR model’. Journal of the American Statistical Association. 10.1080/01621459.2012.713867 Google Scholar
  • 11. Durbin, J. , Koopman, S.J. (2001). Time Series Analysis by State Space Methods. Oxford University Press Google Scholar
  • 12. Durbin, J. , Koopman, S.J. (2002). ‘A simple and efficient simulation smoother for state space time series analysis’. Biometrika. 89, 3, 603-616 Google Scholar
  • 13. Forni, M. , Reichlin, L. (1998). ‘Let’s get real: a factor analytical approach to disaggregated business cycle dynamics’. Review of Economic Studies. 65, 453-473 Google Scholar
  • 14. Forni, M.M. , Hallin, M. , Lippi, M. , Reichlin, L. (2000). ‘The generalized dynamicfactor model: identification and estimation’. Review of Economics and Statistics. 82, 540-554 Google Scholar
  • 15. Fruhwirth-Schnatter, S. (1995). ‘Bayesian model discrimination and Bayes factors for linear Gaussian state space models’. Journal of the Royal Statistical Society, Series B: Methodological. 57, 237-246 Google Scholar
  • 16. Gelman, A. , Carlin, J.B. , Stern, H.S. , Rubin, D.B. (2002). Bayesian Data Analysis. 2nd ed., Chapman & Hall Google Scholar
  • 17. George, E.I. , McCulloch, R.E. (1997). ‘Approaches for Bayesian variable selection’. Statistica Sinica. 7, 339-374 Google Scholar
  • 18. Ghosh, J. , Clyde, M.A. (2011). ‘Rao-blackwellization for Bayesian variable selection and model averaging in linear and binary regression: a novel data augmentation approach’. Journal of the American Statistical Association. 106, 495, 1041-1052 Google Scholar
  • 19. Google.org (2012). [online] http://www.google.org/flutrends/about/how.html Google Scholar
  • 20. Harvey, A.C. (1989). Forecasting, Structural Time Series Models and the Kalman Filter. Cambridge University Press Google Scholar
  • 21. Hoeting, J.A. , Madigan, D. , Raftery, A.E. , Volinsky, C.T. (1999). ‘Bayesian model averaging: a tutorial (disc: P401-417)’. Statistical Science. 14, 382-401 Google Scholar
  • 22. Kalman, R. (1960). ‘A new approach to linear filtering and prediction problems’. Journal of Basic Engineering. 82, 35-45 Google Scholar
  • 23. Liang, F. , Paulo, R. , Molina, G. , Clyde, M.A. , Berger, J.O. (2008). ‘Mixtures of g-priors for Bayesian variable selection’. Journal of the American Statistical Association. 103, 410-423 Google Scholar
  • 24. Madigan, D. , Raftery, A.E. (1994). ‘Model selection and accounting for model uncertainty in graphical models using Occam’s window’. Journal of the American Statistical Association. 89, 428, 1535-1546 Google Scholar
  • 25. McCausland, W.J. , Miller, S. , Pelletier, D. (2011). ‘Simulation smoothing for state-space models: a computational efficiency analysis’. Computational Statistics and Data Analysis. 55, 1, 199-212 Google Scholar
  • 26. Rue, H. (2001). ‘Fast sampling of Gaussian Markov random fields’. Journal of the Royal Statistical Society: Series B (Statistical Methodology). 63, 2, 325-338 Google Scholar
  • 27. Shaman, J. , Karspeck, A. (2012). ‘Forecasting seasonal outbreaks of influenza’. Proceedings of the National Academy of Science. [online] http://www.pnas.org/content/early/2012/11/21/1208772109 Google Scholar
  • 28. Stock, J.H. , Watson, M.W. (2002a). ‘Forecasting using principal components from a large number of predictors’. Journal of the American Statistical Association. 97, 1167-1179 Google Scholar
  • 29. Stock, J.H. , Watson, M.W. (2002b). ‘Macroeconomic forecasting using diffusion indexes’. Journal of Business and Economic Statistics. 20, 147-162 Google Scholar
  • 30. Zellner, A. , Goel, P.K. Zellner, A. (1986). ‘On assessing prior distributions and Bayesian regression analysis with g-prior distributions’. Bayesian Inference and Decision Techniques: Essays in Honor of Bruno de Finetti. North-Holland/Elsevier, 233-243 Google Scholar