Skip to main content
Skip main navigation
No Access

Review of empirical modelling techniques for modelling of turning process

Published Online:pp 121-129https://doi.org/10.1504/IJMIC.2013.056184

The most widely and well known machining process used is turning. The turning process possesses higher complexity and uncertainty and therefore several empirical modelling techniques such as artificial neural networks, regression analysis, fuzzy logic and support vector machines have been used for predicting the performance of the process. This paper reviews the applications of empirical modelling techniques in modelling of turning process and unearths the vital issues related to it.

Keywords

empirical, modelling, turning, artificial neural network, ANN, review, regression analysis, genetic programming, support vector machines, SVM

References

  • 1. Abburi, N. , Dixit, U. (2006). ‘A knowledge-based system for the prediction of surface roughness in turning process’. Robotics and Computer-Integrated Manufacturing. 22, 4, 363-372 Google Scholar
  • 2. Agarwal, P.K. , Chand, S. (2011). ‘Fuzzy logic control of three-pole active magnetic bearing system’. International Journal of Modeling, Identification and Control. 12, 4, 395-411 AbstractGoogle Scholar
  • 3. Aggarwal, A. , Singh, H. (2005). ‘Optimization of machining techniques – a retrospective and literature review’. Sadhana – Academy Proceedings in Engineering Sciences. 30, 6, 699-711 Google Scholar
  • 4. Al-Ahmari, A. (2007). ‘Predictive machinability models for a selected hard material in turning operations’. Journal of Materials Processing Technology. 190, 1–3, 305-311 Google Scholar
  • 5. Aouici, H. , Yallese, M.A. , Fnides, B. , Chaoui, K. , Mabrouki, T. (2011). ‘Modeling and optimization of hard turning of X38CrMoV5-1 steel with CBN tool: machining parameters effects on flank wear and surface roughness’. Journal of Mechanical Science and Technology. 25, 11, 2843-2851 Google Scholar
  • 6. Azar, A.T. (2011). ‘Neuro-fuzzy system for cardiac signals classification’. International Journal of Modeling, Identification and Control. 13, 1–2, 108-116 AbstractGoogle Scholar
  • 7. Azouzi, R. , Guillot, M. (1997). ‘On-line prediction of surface finish and dimensional deviation in turning using neural network based sensor fusion’. International Journal of Machine Tools and Manufacture. 37, 9, 1201-1217 Google Scholar
  • 8. Basak, S. , Dixit, U. , Davim, J. (2007). ‘Application of radial basis function neural networks in optimization of hard turning of AISI D2 cold-worked tool steel with a ceramic tool’. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture. 221, 6, 987-998 Google Scholar
  • 9. Baziar, M.H. , Jafarian, Y. , Shahnazari, H. , Movahed, V. , Tutunchian, M.A. (2011). ‘Prediction of strain energy-based liquefaction resistance of sand-silt mixtures: an evolutionary approach’. Computers and Geosciences. 37, 11, 1883-1893 Google Scholar
  • 10. Çaydas, U. , Ekici, S. (2010). ‘Support vector machines models for surface roughness prediction in CNC turning of AISI 304 austenitic stainless steel’. Journal of Intelligent Manufacturing. 23, 3, 639-650 Google Scholar
  • 11. Chandrasekaran, M. , Muralidhar, M. , Krishna, C.M. , Dixit, U. (2010). ‘Application of soft computing techniques in machining performance prediction and optimization: a literature review’. The International Journal of Advanced Manufacturing Technology. 46, 5–8, 445-464 Google Scholar
  • 12. Chatterjee, S. , Hadi, A.S. (2006). Regression Analysis by Example. Hoboken, New Jersey, USA:John Wiley and Sons, Inc. Google Scholar
  • 13. Chavoshi, S.Z. (2011). ‘Tool flank wear prediction in CNC turning of 7075 AL alloy SiC composite’. Production Engineering. 5, 1, 37-47 Google Scholar
  • 14. Chryssolouris, G. , Lee, M. , Ramsey, A. (1996). ‘Confidence interval prediction for neural network models’. IEEE Transactions on Neural Networks. 7, 1, 229-232 Google Scholar
  • 15. Davim, J. P. , Gaitonde, V. N. , Karnik, S. R. (2008). ‘Investigations into the effect of cutting conditions on surface roughness in turning of free machining steel by ANN models’. Journal of Materials Processing Technology. 205, 1–3, 16-23 Google Scholar
  • 16. Dhumal, A.T. , Narayanan, R.G. , Kumar, G.S. (2012). ‘Simulation based expert system to predict the deep drawing behaviour of tailor welded blanks’. International Journal of Modeling, Identification and Control. 15, 3, 164-172 AbstractGoogle Scholar
  • 17. Dutta, R.K. , Paul, S. , Chattopadhyay, A.B. (2000). ‘Applicability of the modified back-propagation algorithm in tool condition monitoring for faster convergence’. Journal of Materials Processing Technology. 98, 3, 299-309 Google Scholar
  • 18. Erzurumulu, T. , Oktem, H. (2007). ‘Comparison of response surface model with neural network in determining the surface quality of moulded parts’. Materials and Design. 28, 2, 459-465 Google Scholar
  • 19. Ezugwu, E.O. , Arthur, S.J. , Hines, E.L. (1995). ‘Tool-wear prediction using artificial neural networks’. Journal of Materials Processing Tech.. 49, 3–4, 255-264 Google Scholar
  • 20. Fang, X. , Jawahir, I. (1994). ‘Predicting total machining performance in finish turning using integrated fuzzy-set models of the machinability parameters’. The International Journal of Production Research. 32, 4, 833-849 Google Scholar
  • 21. Feng, C-X. , Wang, X-F. (2003). ‘Surface roughness predictive modeling: neural networks versus regression’. IIE Transactions. 35, 1, 11-27 Google Scholar
  • 22. Gajate, A. , Haber, R. , Deltoro, R. , Vega, P. , Bustillo, A. (2010). ‘Tool wear monitoring using neuro-fuzzy techniques: a comparative study in a turning process’. Journal of Intelligent Manufacturing. 23, 3, 869-882 Google Scholar
  • 23. Garg, A. , Tai, K. (2011). ‘A hybrid genetic programming-artificial neural network approach for modeling of vibratory finishing process’. International Proceedings of Computer Science and Information Technology (IPCSIT). 18, 14-19 Google Scholar
  • 24. Garg, A. , Tai, K. (2012a). ‘Comparison of regression analysis, artificial neural network and genetic programming in handling the multicollinearity problem’. International Conference on Modelling, Identification and Control (ICMIC), IEEE, 353-358 Google Scholar
  • 25. Garg, A. , Tai, K. (2012b). ‘Review of Genetic Programming in modeling of machining processes’. International Conference on Modelling, Identification and Control (ICMIC), IEEE, 653-658 Google Scholar
  • 26. Garg, A. , Tai, K. (2013a). ‘Comparison of statistical and machine learning methods in modelling of data with multicollinearity’. Int. J. Modelling, Identification and Control. (in press) Google Scholar
  • 27. Garg, A. , Tai, K. , Lee, C.H. , Savalani, M.M. (2013b). ‘A hybrid – M5’ genetic programming approach for ensuring greater trustworthiness of prediction ability in modelling of FDM process’. Journal of Intelligent Manufacturing. 1-17, 10.1007/s10845-013-0734-1 Google Scholar
  • 28. Gill, S.S. , Singh, R. , Singh, J. , Singh, H. (2012). ‘Adaptive neuro-fuzzy inference system, modeling of cryogenically treated AISI M2 HSS turning tool for estimation of flank wear’. Expert Systems with Applications. 39, 4171-4180 Google Scholar
  • 29. Gupta, A.K. (2008). ‘Predictive modeling of turning operations using response surface methodology, artificial neural networks and support vector regression’. International Journal of Production Research. 48, 3, 763-778 Google Scholar
  • 30. Hadi, Y. , Ahmed, S.G. (2006). ‘Assessment of surface roughness model for turning process’. Knowledge Enterprise: Intelligent Strategies in Product Design, Manufacturing and Management, Proceedings of PROLAMAT 2006, IFIP TC5 International Conference. 207, Shanghai, China, 152-158 Google Scholar
  • 31. Hao, W. , Zhu, X. , Li, X. , Turyagyenda, G. (2006). ‘Prediction of cutting force for self-propelled rotary tool using artificial neural networks’. Journal of Materials Processing Technology. 180, 1–3, 23-29 Google Scholar
  • 32. Hearst, M.A. , Dumais, S. , Osman, E. , Platt, J. , Scholkopf, B. (1998). ‘Support vector machines’. Intelligent Systems and their Applications. 13, 4, IEEE, 18-28 Google Scholar
  • 33. Hiden, H.G. (1998). Data-Based Modeling using Genetic Programming. UK:Dept. Chemical and Process Engineering, University of Newcastle , PhD thesis Google Scholar
  • 34. Hinchliffe, M. , Hiden, H. , Mckay, B. , Willis, M. , Tham, M. , Barton, G. (1996). Modeling Chemical Process Systems using a Multi-Gene Genetic Programming Algorithm. Stanford, USA, 28-31, Late breaking paper, GP `96 Google Scholar
  • 35. Jiao, Y. , Lei, S. , Pei, Z. , Lee, E. (2004). ‘Fuzzy adaptive networks in machining process modeling: surface roughness prediction for turning operations’. International Journal of Machine Tools and Manufacture. 44, 15, 1643-1651 Google Scholar
  • 36. Judd, C.M. , Mcclelland, G.H. , Ryan, C.S. (2009). Data Analysis: A Model Comparison Approach. New York, USA:Routledge/Taylor and Francis Group Google Scholar
  • 37. Kaewkuekool, S. , Jirapattarasilp, K. , Pechkong, K. (2009). ‘A study of influence factors affecting to surface roughness in stainless steel turning’. Proceedings of International Conference on Computer Engineering and Technology (ICCET). 2, 299-302 Google Scholar
  • 38. Kankar, P.K. , Sharma, S.C. , Harsha, S.P. (2012). ‘Vibration-based fault diagnosis of a rotor bearing system using artificial neural network and support vector machine’. International Journal of Modeling, Identification and Control. 15, 3, 185-198 AbstractGoogle Scholar
  • 39. Kirby, E.D. , Chen, J.C. (2007). ‘Development of a fuzzy-nets-based surface roughness prediction system in turning operations’. Computers and Industrial Engineering. 53, 1, 30-42 Google Scholar
  • 40. Kohli, A. , Dixit, U.S. (2005). ‘A neural-network-based methodology for the prediction of surface roughness in a turning process’. International Journal of Advanced Manufacturing Technology. 25, 1–2, 118-129 Google Scholar
  • 41. Kovacic, M. , Brezocnik, M. (2003). ‘Genetic programming approach for surface quality prediction’. Tehnicki Vjesnik. 10, 1, 19-24 Google Scholar
  • 42. Kovacic, M. , Balic, J. , Brezocnik, M. (2004). ‘Evolutionary approach for cutting forces prediction in milling’. Journal of Materials Processing Technology. 155, 1, 1647-1652 Google Scholar
  • 43. Koza, J.R. (1994). Genetic Programming II: Automatic Discovery of Reusable Programs. 1st ed., USA, A Bradford Book Google Scholar
  • 44. Kushchu, I. (2002). ‘Genetic programming and evolutionary generalization’. IEEE Transactions on Evolutionary Computation. 6, 5, 431-442 Google Scholar
  • 45. Lan, T.S. (2011). ‘Fuzzy parametric deduction for material removal rate optimization’. Journal of Mathematics and Statistics. 7, 1, 51-56 Google Scholar
  • 46. Li, W. , Yang, Y. , Yang, Z. , Zhang, C. (2011). ‘Fuzzy system identification based on support vector regression and genetic algorithm’. International Journal of Modeling, Identification and Control. 12, 1–2, 50-55 AbstractGoogle Scholar
  • 47. Lin, J. , Shen, J. (2011). ‘Non-linear modeling of drum-boiler-turbine unit using an evolving Takagi-Sugeno fuzzy model’. International Journal of Modeling, Identification and Control. 12, 1–2, 56-65 AbstractGoogle Scholar
  • 48. Ma, C.Y. , Buontempo, F.V. , Wang, X.Z. (2011). ‘Inductive data mining: automatic generation of decision trees from data for QSAR modeling and process historical data analysis’. International Journal of Modeling, Identification and Control. 12, 1–2, 101-106 AbstractGoogle Scholar
  • 49. Massol, O. , Li, X. , Gouriveau, R. , Zhou, J.H. , Gan, O.P. (2010). ‘An exTS based neuro-fuzzy algorithm for prognostics and tool condition monitoring’. 11th International Conference on Control Automation Robotics and Vision, 1329-1334 Google Scholar
  • 50. Mata, F. , Beamud, E. , Hanafi, I. , Khamlichi, A. , Jabbouri, A. , Bezzazi, M. (2010). ‘Multiple regression prediction model for cutting forces in turning carbon-reinforced PEEK CF30’. Advances in Materials Science and Engineering. 2010, 1, 1-7 Google Scholar
  • 51. Mon, Y.J. , Lin, C.M. (2012). ‘Fuzzy sliding PDC control for some non-linear systems’. International Journal of Modeling, Identification and Control. 16, 4, 372-379 AbstractGoogle Scholar
  • 52. Mukherjee, I. , Ray, P.K. (2006). ‘A review of optimization techniques in metal cutting processes’. Computers and Industrial Engineering. 50, 1–2, 15-34 Google Scholar
  • 53. Nalbant, M. , Gokkaya, H. , Toktas, I. , Sur, G. (2009). ‘The experimental investigation of the effects of uncoated, PVD- and CVD-coated cemented carbide inserts and cutting parameters on surface roughness in CNC turning and its prediction using artificial neural networks’. Robotics and Computer-Integrated Manufacturing. 25, 1, 211-223 Google Scholar
  • 54. Nandi, A. , Pratihar, D. (2004a). ‘An expert system based on FBFN using a GA to predict surface finish in ultra-precision turning’. Journal of Materials Processing Technology. 155, 1, 1150-1156 Google Scholar
  • 55. Nandi, A.K. , Pratihar, D.K. (2004b). ‘An expert system based on FBFN using a GA to predict surface finish in ultra-precision turning’. Journal of Materials Processing Technology. 155–156, 1, 1150-1156 Google Scholar
  • 56. Özel, T. , Karpat, Y. (2005). ‘Predictive modeling of surface roughness and tool wear in hard turning using regression and neural networks’. International Journal of Machine Tools and Manufacture. 45, 1, 467-479 Google Scholar
  • 57. Özel, T. , Karpat, Y. , Figueira, L. , Davim, J.P. (2007). ‘Modeling of surface finish and tool flank wear in turning of AISI D2 steel with ceramic wiper inserts’. Journal of Materials Processing Technology. 189, 1, 192-198 Google Scholar
  • 58. Ozkan, I.A. , Saritas, I. , Yaldiz, S. (2010). ‘A comparative study of ANN and FES for predicting of cutting forces and tool tip temperature in turning’. Proceedings for 11th International Conference on Computer Systems and Technologies and Workshop for PhD Students in Computing. 177-185 Google Scholar
  • 59. Pal, S.K. , Chakraborty, D. (2005). ‘Surface roughness prediction in turning using artificial neural network’. Neural Computing and Applications. 14, 4, 319-324 Google Scholar
  • 60. Prakash, U. , Yogavardhanaswamy, G.N. , Prasad, S.L.A. , Ravindra, H.V. , Rajan, T.D.P. (2011). ‘Tool wear prediction by regression analysis in turning A356 with 10% SiC’. International Proceedings of Recent Advances in Intelligent Computational Systems (RAICS). 682-687 Google Scholar
  • 61. Qian, Y. , Tian, J. , Liu, L. , Zhang, Y. , Chen, Y. (2010). ‘A tool wear predictive model based on SVM’. Control and Decision Conference (CCDC), 1213-1217 Google Scholar
  • 62. Rajasekaran, T. , Palanikumar, K. , Vinayagam, B.K. (2011). ‘Application of fuzzy logic for modeling surface roughness in turning CFRP composites using CBN tool’. Production Engineering. 5, 2, 191-199 Google Scholar
  • 63. Rajasekaran, T. , Vinayagam, B. K. , Palanikumar, K. , Prakash, S. (2010). ‘Influence of machining parameters on surface roughness and material removal rate in machining carbon fiber reinforced polymer material’. Proceedings of the International Conference on Frontiers in Automobile and Mechanical Engineering – 2010, FAME – 2010. 75-80, Art. No. 5714801 Google Scholar
  • 64. Rangwala, S.S. , Dornfeld, D.A. (1989). ‘Learning and optimization of machining operations using computing abilities of neural networks’. Systems, Man and Cybernetics, IEEE Transactions on. 19, 2, 299-314 Google Scholar
  • 65. Risbood, K. , Dixit, U. , Sahasrabudhe, A. (2003). ‘Prediction of surface roughness and dimensional deviation by measuring cutting forces and vibrations in turning process’. Journal of Materials Processing Technology. 132, 1–3, 203-214 Google Scholar
  • 66. Salgado, D.R. , Alonso, F.J. (2007). ‘An approach based on current and sound signals for in-process tool wear monitoring’. International Journal of Machine Tools and Manufacture. 47, 14, 2140-2152 Google Scholar
  • 67. Salgado, D.R. , Alonso, F.J. , Cambero, I. , Marcelo, A. (2009). ‘In-process surface roughness prediction system using cutting vibrations in turning’. International Journal of Advanced Manufacturing Technology. 43, 1–2, 40-51 Google Scholar
  • 68. Sarma, D. , Dixit, U. (2007). ‘A comparison of dry and air-cooled turning of grey cast iron with mixed oxide ceramic tool’. Journal of Materials Processing Technology. 190, 1–3, 160-172 Google Scholar
  • 69. Shao, R. , Martin, E. , Zhang, J. , Morris, A. (1997). ‘Confidence bounds for neural network representations’. Computers and Chemical Engineering. 21, Supplement No. 1, S1173-S1178 Google Scholar
  • 70. Shi, X.J. , Yu, W.D. (2011). ‘Intelligent animal fibre classification with artificial neural networks’. International Journal of Modeling, Identification and Control. 12, 1–2, 107-112 AbstractGoogle Scholar
  • 71. Sun, X. , Zhu, H. (2012). ‘Artificial neural networks inverse control of 5 degrees of freedom bearingless induction motor’. International Journal of Modeling, Identification and Control. 15, 3, 156-163 AbstractGoogle Scholar
  • 72. Tarhouni, M. , et al. (2012). ‘Least squares support kernel machines (LS-SKM) for identification’. International Journal of Modeling, Identification and Control. 17, 1, 68-77 AbstractGoogle Scholar
  • 73. Thakur, D.G. , Ramamoorthy, B. , Vijayaraghavan, L. (2009). ‘An experimental analysis of effective high speed turning of superalloy Inconel 718’. Journal of Materials Science. 44, 12, 3296-3304 Google Scholar
  • 74. Tosun, N. , Özler, L. (2002). ‘A study of tool life in hot machining using artificial neural networks and regression analysis method’. Journal of Materials Processing Technology. 124, 1–2, 99-104 Google Scholar
  • 75. Wen, S. , Deng, M. , Inoue, A. (2012). ‘Operator-based robust non-linear control for gantry crane system with soft measurement of swing angle’. International Journal of Modeling, Identification and Control. 16, 1, 86-96 AbstractGoogle Scholar
  • 76. Yaldiz, S. , Unsacar, F. , Saglam, H. (2006). ‘Comparison of experimental results obtained by designed dynamometer to fuzzy model for predicting cutting forces in turning’. Materials and Design. 27, 10, 1139-1147 Google Scholar
  • 77. Yan, C. , Li, Z. (2011). ‘Predictive controller design for multivariable process system based on support vector machine model’. International Journal of Modeling, Identification and Control. 13, 3, 234-240 AbstractGoogle Scholar
  • 78. Zain, A.M. , Haron, H. , Sharif, S. (2009). ‘Review of ANN technique for modeling surface roughness performance measure in machining process’. Third Asia International Conference on Modeling and Simulation, AMS ‘09, 35-39 Google Scholar
  • 79. Zhang, J.Y. , Liang, S.Y. , Zhang, G. , Yen, D. (2006). ‘Modeling of residual stress profile in finish hard turning’. Materials and Manufacturing Processes. 21, 1, 39-45 Google Scholar