Skip to main content
No Access

A system for autonomous canine guidance

Published Online:pp 33-46https://doi.org/10.1504/IJMIC.2013.055911

This paper presents an approach for autonomous guidance of a canine using an embedded command module with vibration and tone generation capabilities and an embedded control suite. The control suite is comprised of a microprocessor, wireless radio, GPS receiver, and an attitude and heading reference system. A canine maximum effort controller was implemented for autonomous control of the canine, which proved to be effective at guiding the canine to multiple waypoints. Results from structured and non-structured environment two waypoint trials indicated a 97.7% success rate. Three waypoint trials resulted in a success rate of 70.1%, and the overall success rate of the control system was found to be 86.6%.

Keywords

cyborg, bang-bang control, canine, unmanned system, autonomous control, remote control, modelling, identification

References

  • 1. Bozkurt, A. , Gilmour, R. , Stem, D. , Lal, A. (2008). ‘MEMS based bioelectronic neuromuscular interfaces for insect cyborg flight control’. IEEE MEMS Conf., 160-163 Google Scholar
  • 2. Britt, W. A Software and Hardware System for the Autonomous Control and Navigation of a Trained Canine. 2009, Summer, Auburn University, PhD dissertation Google Scholar
  • 3. Britt, W.R. , Miller, J. , Waggoner, P. , Bevly, D.M. , Hamilton, J.A. (2010). ‘An embedded system for real-time navigation and remote command of a trained canine’. Journal of Personal and Ubiquitous Computing. 10.1007/s00779-010-0298-4 Google Scholar
  • 4. Correl, N. , Schwager, M. , Rus, D. (2008). ‘Social control of herd animals by integration of artificially controlled congeners’. Proc. of the 10th International Conference on Simulation of Adaptive Behavior. 437-447 Google Scholar
  • 5. Detection Services (2010). ‘Amdetech: protection through detection’. (accessed 18 May 2010), [online] http://www.amdetech.com Google Scholar
  • 6. Ghommam, J. , Mnif, F. , Calvo, O. (2012). ‘Formation control of multiple marine vehicles with velocity reference estimation-based passivity-control design’. Int. J. of Modelling, Identification and Control. 15, 2, 97-107 AbstractGoogle Scholar
  • 7. Gomes, W.J. , Perez, D. , Catipovic, J.A. (2006). ‘Autonomous shark tag with neural reading and stimulation capability for open-ocean experiments’. Eos Trans. AGU. 87, 36, Ocean Sci. Meet. Suppl., Abstract OS45Q-05 Google Scholar
  • 8. Grand challenge: smart vest for detector dogs (2010). (accessed 18 May 2010), National Aerospace & Electronics Conference, [online] http://www.naecon.org/challenge.htm Google Scholar
  • 9. Holzer, R. , Shimoyama, I. , Miura, H. (1997). ‘Locomotion control of a bio-robotic system via electric stimulation’. International Conference on Intelligent Robots and Systems, Grenoble, France Google Scholar
  • 10. Huai, R. , Yang, J. , Wang, H. , Su, X. (2009). ‘A new robo-animals navigation method guided by the remote control’. Proc. of the 2nd International Conference on Biomedical Engineering and Informatics. 1-4 Google Scholar
  • 11. Li, Y. , Panwar, S. (2006). ‘A wireless biosensor network using autonomously controlled animals’. IEEE Network. 20, 3, 6-11 Google Scholar
  • 12. Li, Y. , Panwar, S.S. , Shiwen, M. , Burugupalli, S. , Lee, J. (2005). ‘A mobile ad hoc bio-sensor network’. IEEE International Conference on Communications, 1241-1245 Google Scholar
  • 13. Marshall, J. ‘The cyborg animal spies hatching in the lab’. New Scientist. 2008, 03, (accessed 18 May 2010), 646, [online] http://www.newscientist.com/article/mg19726461.800-the-cyborg-animal-spies-hatching-in-the-lab.html?full=true Google Scholar
  • 14. Miller, J. A Maximum Effort Control System for the Tracking and Control of a Guided Canine. 2010, Fall, Auburn University, PhD dissertation Google Scholar
  • 15. Miller, J. , Lyles, W. , Bevley, D.M. ‘Hands-free radio/audio silent navigation system (HFSNS) for dismounted soldiers’. Integrated Solutions for Systems SBIR Proposal A102-073-0989. 2010, 06 Google Scholar
  • 16. Moghadam, A. , Moavenian, M. , Toussi, H.E. (2011). ‘Modelling and robust control of a soft robot based on conjugated polymer actuators’. Int. J. of Modelling Identification and Control. 14, 3, 216-226 Google Scholar
  • 17. Qu, S. , Tian, Y. , Chen, C. , Ai, L. (2012). ‘A small intelligent car system based on fuzzy control and CCD camera’. Int. J. of Modelling Identification and Control. 15, 1, 48-54 AbstractGoogle Scholar
  • 18. Sato, H. , Berry, C.W. , Casey, B.E. , Lavella, G. , Yao, Y. , Vandenbrooks, J.M. , Maharbiz, M.M. (2008). ‘A cyborg beetle: insect flight control through an implantable tetherless microsystem’. IEEE MEMS Conf., 164-167 Google Scholar
  • 19. Sato, H. , Peeri, Y. , Baghoomian, E. , Berry, C.W. , Maharbiz, M.M. (2009). ‘Radio-controlled cyborg beetles: a radio-frequency system for insect neural flight control’. IEEE MEMS Conf., 216-219 Google Scholar
  • 20. Schwager, C. , Detweiler, C. , Vasilescu, I. , Anderson, D.M. , Rus, D. (2008). ‘Data-driven identification of group dynamics for motion prediction and control’. Journal of Field and Service Robotics. 25, 6–7, 305-324 Google Scholar
  • 21. Song, W. , Chai, J. , Han, T. , Yuan, K. (2006). ‘A remote controlled multimode micro-stimulator for freely moving animals’. Acta. Physiologica Sinica. 58, 2, 183-188 Google Scholar
  • 22. Talwar, S. , Xu, S. , Hawley, E. , Weiss, S. , Moxon, K. , Chapin, J. (2002). ‘Rat navigation guided by remote control’. Nature. 417, 6884, 37-38 Google Scholar