Skip to main content
No Access

Free Search – comparative analysis 100

Published Online:pp 118-132https://doi.org/10.1504/IJMHEUR.2014.063142

Search methods’ abilities for adaptation to various multidimensional tasks where optimisation parameters are hundreds, thousands and more, without retuning of algorithms’ parameters seems to be a great challenge for modern computational intelligence. Many evolutionary, swarm and adaptive methods, which perform well on numerical tests with up to ten dimensions are suffering insuperable stagnation when applied to 100 and more dimensional tests. This article presents a comparison between particle swarm optimisation, differential evolution both with enhanced adaptivity and Free Search applied to 100 multidimensional heterogeneous real-value numerical tests. The aim is to extend the knowledge on how high dimensionality reflects on search space complexity, in particular to identify minimal time and minimal number of objective function evaluations required by used methods for reaching acceptable solution with non-zero probability on tasks with high dimensions’ number. The achieved experimental results are summarised and analysed. Brief discussion on concepts, which support search methods effectiveness, concludes the article.

Keywords

multidimensional optimisation, adaptive search algorithms, Free Search, FS, differential evolution, particle swarm optimisation, PSO

References

  • 1. Bäck, T , Schwefel, H.P. (1993). ‘An overview of evolutionary algorithms for parameter optimization’. Evolutionary Computation. 1, 1, 1-23 Google Scholar
  • 2. Brekke, E.F. (2004). Complex Behaviour in Dynamical Systems. (accessed 20 September 2013), The Norwegian University of Science and Technology, 37-38, [online] http://www.academia.edu/545835/COMPLEX_BEHAVIOR_IN_DYNAMICAL_SYSTEMS Google Scholar
  • 3. Bremermann, H. , Yovits, M. Jacobi, G Goldstein, G. (1962). ‘Optimization through evolution and recombination’. Self-Organizing Systems. New York:Spartan Books , 93-106 Google Scholar
  • 4. De Jung, K.A. (1975). An Analysis of the Behaviour of a Class of Genetic Adaptive Systems. University of Michigan, PhD thesis Google Scholar
  • 5. Eberhart, R , Kennedy, J. (1995). ‘Particle swarm optimisation’. Proceedings of the 1995 IEEE International Conference on Neural Networks. 4, IEEE Press, 1942-1948 Google Scholar
  • 6. Eberhart, R , Shi, Y. (2000). ‘Comparing inertia weights and construction factors in particle swarm optimization’. Proceedings of the 2000 Congress on Evolutionary Computation. 84-89 Google Scholar
  • 7. Fogel, D.B. (2000). Evolutionary Computation – Toward a New Philosophy of Machine Intelligence. USA and Canada:IEEE Press , ISBN 0-7803-5379-X Google Scholar
  • 8. Griewank, A.O. (1981). ‘Generalized decent for global optimization’. Journal of Optimization Theory and Applications. 34, 1, 11-39 Google Scholar
  • 9. Hedar, A-R. (2013). Global Optimization, Michalewicz Function. (accessed 20 September 2013), Japan:Kyoto University , [online] http://www-optima.amp.i.kyoto-u.ac.jp/member/student/hedar/Hedar_files/TestGO_files/ Page2376.htm Google Scholar
  • 10. Hendtlass, T. (2009). ‘Particle swarm optimization and high dimensional problem spaces’. IEEE Congress on Evolutionary Computation (CEC 2009), 1988-1994 Google Scholar
  • 11. Keane, A.J. , Rayward-Smith, V.J. Osman, I.H. Reeves, C.R Smith, G.D. (1996). ‘A brief comparison of some evolutionary optimization methods’. Modern Heuristic Search Methods. Chichester, UK:John Wiley , 255-272 Google Scholar
  • 12. Liu, P , Lewis, M.J. ‘Communication aspects of an asynchronous parallel evolutionary algorithm’. Proceedings of the Third International Conference on Communications in Computing. 2002, 06, 24–27, Las Vegas, NV, 190-195 Google Scholar
  • 13. Liu, P. , Lau, F.C.C. , Lewis, M.J , Wang, C-L. (2002). ‘A new asynchronous parallel evolutionary algorithm for function optimization’. Proceedings of the 7th International Conference on Parallel Problem Solving from Nature. London, UK:Springer-Verlag , 401-410 Google Scholar
  • 14. MacNish, C , Yao, X. (2008). ‘Direction matters in high-dimensional optimisation’. IEEE Congress on Evolutionary Computation, 2372-2379 Google Scholar
  • 15. Michalewicz, Z , Fogel, D. (2002). How to Solve it: Modern Heuristics. Berlin, Heidelberg, New York:Springer-Verlag , ISBN 3-540-66061-5 Google Scholar
  • 16. Noman, N , Iba, H. (2005). ‘Enhancing differential evolution performance with local search for high dimensional function optimization’. Proceedings of the 2005 Conference on Genetic and Evolutionary Computation. 967-974 Google Scholar
  • 17. Penev, K. (2008). Free Search of Real Value or How to Make Computers Think. UK:St. Qu , ISBN 978-0-9558948-0-0 Google Scholar
  • 18. Penev, K. (2009). ‘Adaptive intelligence – essential aspects’. Journal Information Technologies and Control. VII, 4, 8-17, ISSN 1312-2622 Google Scholar
  • 19. Penev, K , Littlefair, G. (2005). ‘Free Search – a comparative analysis’. Information Sciences Journal. 172, 1–2, Elsevier, 173-193 Google Scholar
  • 20. Price, K , Storn, R (1995). Differential Evolution – A Simple and Efficient Adaptive Scheme for Global Optimisation over Continuous Spaces. Berkeley, CA:International Computer Science Institute , TR-95-012 Google Scholar
  • 21. Rosenbrock, H.H. (1960). ‘An automate method for finding the greatest or least value of a function’. Comput. J.. 3, 3, 175-184 Google Scholar
  • 22. Storn, R. ‘Constrained optimisation’. Dr Dobb’s Journal. 1994, 05, 20, 5, 119-123 Google Scholar
  • 23. Torn, A , Zilinskas, A. (1989). ‘Global optimization’. Lecture Notes in Computer Science. 350, Berlin:Springer Google Scholar
  • 24. Yang, Z. , Tang, K , Yao, X. ‘Differential evolution for high-dimensional, function optimization’. 2007, 09, 25–28, IEEE Congress on Evolutionary Computation, 3523-3530 Google Scholar
  • 25. Yang, Z. , Tang, K , Yao, X. ‘Large scale evolutionary optimization using cooperative coevolution’. Information Sciences. 2008, 08, 01, 178, 15, 2985-2999 Google Scholar