Verification of SBL models by mobile SODAR measurements
Abstract
Models of atmospheric pollutant transport need information about the structure of the atmospheric boundary layer (ABL). The most important characteristics for such applications are the parameterisation of the stable boundary layer (SBL) and the mixing layer height (MLH). Recently, many different schemes have been employed to calculate the SBL height, but there are many problems with applying these models in environmental studies. Remote sensing of the atmospheric boundary layer using an acoustic sounder provides an opportunity to assess the mixing height based on analysis of SODAR echo strength. During the night, with a steady state of the stable boundary layer, the mixing height is associated with the range of the inversion layer. In the present study, an attempt is made to assess the stable boundary layer height over an urban area based on seven different schemes. Furthermore, the relationship between the mixing height obtained from SODAR measurements and that obtained from models is examined. Data gathered during field experiments in Wroclaw and Cracow are employed for the evaluation of these models.
Keywords
References
- 1. S.P.S. Arya, '‘Parameterizing the height of the stable atmospheric boundary layer’' Journal of Applied Meteorology (1981) Google Scholar
- 2. A. Baklanov, S.M. Joffre, M. Piringer, M. Deserti, D.R. Middleton, M. Tombrou, A. Karppinen, S. Emeis, V. Prior, M.W. Rotach, G. Bonafè, K. Baumann-Stanzer, A. Kuchin, '‘Towards estimating the mixing height in urban areas’' (2006) Google Scholar
- 3. A. Baklanov, S. Grimmond, A. Mahura, M. Athanassiadou, '‘Urbanization Of Meteorological And Air Quality Models; Cost Action 728; Enhancing Mesoscale Meteorological Modelling Capabilities For Air Pollution And Dispersion Applications' (2008) Google Scholar
- 4. F. Beyrich, '‘Mixing height estimation from SODAR data: a critical discussion’' Atmos. Environ. (1997) Google Scholar
- 5. S. Bradley, Atmospheric Acoustic Remote Sensing (2008) Google Scholar
- 6. A.J. Cimorelli, S.G. Perry, A. Venkatram, J.C. Weil, R.J. Paine, R.B. Wilson, R.F. Lee, W.D. Peters, R.W. Brode, '‘AERMOD: a dispersion model for industrial source applications. Part I: general model formulation and boundary layer characterization’' Journal of Applied Meteorology (2005) Google Scholar
- 7. A. Drzeniecka-Osiadacz, '‘Thermal, structure of the atmospheric boundary layer in Wrocław and its impact on the air pollution concentration’' (2005) Google Scholar
- 8. J. Eaton, GNU Octave Manual, Network Theory (2002) Google Scholar
- 9. T. Gál, Z. Sümeghy, '‘Mapping the roughness parameters in a large urban area for urban climate applications’' Acta Climatologica et Chorologica (2007) Google Scholar
- 10. T. Gál, J. Unger, '‘Detection of ventilation paths using high-resolution roughness parameter mapping in a large urban area’' Build. Environ. (2009) Google Scholar
- 11. K. German, D. Matuszko Ed., '‘Środowisko przyrodnicze Krakowa i jego wpływ na warunki klimatyczne’' Klimat Krakowa w XX wieku (2007) Google Scholar
- 12. J. Godłowska, A.M. Tomaszewska, '‘Porównanie głębokości warstwy mieszania określonych na podstawie SODARu i pionowego profilu temperatury potencjalnej’' Wiadomości IMGW (2005) Google Scholar
- 13. S-E. Gryning, A.A.M. Holtslag, J.S. Irwin, B. Sivertsen, '‘Applied dispersion modelling based on meteorological scaling parameters’' Atmos. Environ. (1987) Google Scholar
- 14. S.R. Hanna, J.C. Chang, '‘Hybrid plume dispersion model (HPDM) improvements and testing at three field sites’' Atmos. Environ. – Part A General Topics (1993) Google Scholar
- 15. S.R. Hanna, R.J. Paine, '‘Hybrid plume dispersion model (HPDM) development and evaluation’' Journal of Applied Meteorology (1989) Google Scholar
- 16. M.A. Kalistratova, E.P. Singal Ed., Physical Grounds for Acoustic Remote Sensing of the Atmospheric Boundary Layer, Acoustic Remote Sensing Applications (1997) Google Scholar
- 17. M.A. Lokoshchenko, '‘Long-term SODAR observations in Moscow and a new approach of the potential mixing determination by radiosonde data’' Journal of Atmospheric and Oceanic Technology (2002) Google Scholar
- 18. M. Mohan, T.A. Siddiqui, '‘Applied modeling of surface fluxes under different stability regimes’' Journal of Applied Meteorology (1997) Google Scholar
- 19. P. Netzel Ed., '‘Analizy przestrzenne z wykorzystaniem GRASS’' Rozprawy Naukowe Instytutu Geografii i Rozwoju Regionalnego (2011) Google Scholar
- 20. P. Netzel, J. Ślopek, P. Netzel Ed., '‘Obliczanie szorstkości terenu w mieście z wykorzystaniem systemu GRASS’' Analizy przestrzenne z wykorzystaniem GRASS (2011) Google Scholar
- 21. P. Netzel, S. Stano, M. Zarębski, '‘Trójmonostatyczny SODAR dopplerowski 3DDS’' Wiad. IMGW (2000) Google Scholar
- 22. F.T.M. Nieuwstadt, '‘The steady state height and resistance laws of the nocturnal boundary layer theory compared with Cabauw observations’' Boundary-Layer Meteorology (1981) Google Scholar
- 23. J.L. Pyka, '‘Warunki termiczne warstwy granicznej we Wrocławiu w świetle pomiarów SODARowych’' Acta Univ. Wrat., Prace I.G., ser. A (1991) Google Scholar
- 24. F.B. Smith, '‘Atmospheric structure’' Proc. Air Pollution Modelling for Environmental Impact Assessment (1990) Google Scholar
- 25. G.J. Steeneveld, B.J.H. van de Wiel, A.A.M. Holtslag, '‘Diagnostic equations for the stable boundary-layer height: evaluation and dimensional analysis’' Journal of Applied Meteorology and Climatology (2007) Google Scholar
- 26. A. Venkatram, '‘Estimating the Monin-Obukhov length in the stable boundary layer for dispersion calculations’' Boundary-Layer Meteorology (1980) Google Scholar
- 27. D. Vickers, L. Mahrt, '‘Evaluating formulations of stable boundary-layer height’' Journal of Applied Meteorology (2004) Google Scholar
- 28. J. Walczewski, M. Feleksy-Bielak, '‘Diurnal variation of characteristic SODAR echoes and diurnal change of atmospheric stability’' Atmos. Environment (1988) Google Scholar
- 29. S. Zilitinkevich, '‘On the determination of the height of the Ekman boundary layer’' Boundary-Layer Meteorology (1972) Google Scholar
- 30. S. Zilitinkevich, D. Mironov, '‘A multi-limit formulation for the equilibrium depth of a stably stratified boundary layer’' Boundary-Layer Meteorology (1996) Google Scholar
- 31. S. Zilitinkevich, A. Baklanov, J. Rost, A-S. Smedman, V. Lykosov, P. Calanca, '‘Diagnostic and prognostic equations for the depth of the stably stratified Ekman boundary layer’' Quart. J. Roy. Meteorol. Soc. (2002) Google Scholar