Skip to main content
Skip main navigation
No Access

Optimal recovery sequencing for enhanced resilience and service restoration in transportation networks

Published Online:pp 218-246https://doi.org/10.1504/IJCIS.2014.066356

Critical infrastructure resilience has become a national priority for the US Department of Homeland Security. Rapid and efficient restoration of service in damaged transportation networks is a key area of focus. The intent of this paper is to formulate a bi-level optimisation model for network recovery and to demonstrate a solution approach for that optimisation model. The lower-level problem involves solving for network flows, while the upper-level problem identifies the optimal recovery modes and sequences, using tools from the literature on multi-mode project scheduling problems. Application and advantages of this method are demonstrated through two examples.

Keywords

infrastructure resilience, optimisation, transportation networks, project scheduling

References

  • 1. Alcaraz, J. , Maroto, C. , Ruiz, R. (2003). ‘Solving the multimode resource-constrained project scheduling problem with genetic algorithms’. Journal of Operational Research Society. 54, 6, 614-626 Google Scholar
  • 2. Bard, J.F. (1984). ‘Optimality conditions for the bilevel programming problem’. Naval Research Logistics Quarterly. 31, 1, 13-26 Google Scholar
  • 3. Bialas, W.F. , Karwan, M.H. (1984). ‘Two-level linear programming’. Management Science. 30, 8, 1004-1020 Google Scholar
  • 4. Bocchini, P. , Frangopol, D.M. (2012). ‘Restoration of bridge networks after an earthquake: multicriteria intervention optimization’. Earthquake Spectra. 28, 2, 427-455 Google Scholar
  • 5. Boctor, F.F. (1996). ‘Resource-constrained project scheduling by simulated annealing’. International Journal of Production Research. 34, 8, 2335-2351 Google Scholar
  • 6. Bouleimen, K. , Lecocq, H. (2003). ‘A new efficient simulated annealing algorithm for the resource-constrained project scheduling problem and its multiple mode version’. European Journal of Operational Research. 149, 2, 268-281 Google Scholar
  • 7. Bruneau, M. , Chang, S. , Eguchi, R. , Lee, G. , O’Rourke, T. , Reinhorn, A. , Shinozuka, M. , Tierney, K. , Wallace, W. , von Winterfeldt, D. (2003). ‘A framework to quantitatively assess and enhance the seismic resilience of communities’. Earthquake Spectra. 19, 4, 733-752 Google Scholar
  • 8. Bush, G.W. (2002). ‘Homeland Security Presidential Directive-3 (HSPD-3)’. Washington, DC Google Scholar
  • 9. Bush, G.W. (2003). ‘Homeland Security Presidential Directive-7 (HSPD-7)’. Washington, DC Google Scholar
  • 10. Chang, S. , Shinozuka, M. (2004). ‘Measuring improvements in the disaster resilience of communities’. Earthquake Spectra. 20, 3, 739-755 Google Scholar
  • 11. Chen, L. , Miller-Hooks, E. (2012). ‘Resilience: an indicator of recovery capability in intermodal freight transport’. Transportation Science. 46, 1, 109-123 Google Scholar
  • 12. Chen, W-N. , Zhang, J. , Chung, H.S-H. , Huang, R-Z. , Liu, O. (2010). ‘Optimizing discounted cash flows in project scheduling – an ant colony optimization approach’. IEEE Transactions on Systems, Man and Cybernetics, Part C. 40, 1, 64-77 Google Scholar
  • 13. Clausen, J. , Larsen, A. , Larsen, J. , Rezanova, N. (2010). ‘Disruption management in the airline industry – concepts, models and methods’. Computers and Operations Research. 37, 5, 809-821 Google Scholar
  • 14. Clinton, W. (1998). ‘Presidential Decision Directive PDD-63, Protecting America’s Critical Infrastructures’. Washington, DC Google Scholar
  • 15. Cutter, S.L. , Burton, C.G. , Emrich, C.T. (2010). ‘Disaster resilience indicators for benchmarking baseline conditions’. Journal of Homeland Security and Emergency Management. 7, 1, Article 51, 10.2202/1547-7355.1732 Google Scholar
  • 16. Damak, N. , Jarboui, B. , Siarry, P. , Loukil, T. (2009). ‘Differential evolution for solving, multi-mode resource-constrained project scheduling problems’. Computers & Operations Research. 36, 9, 2653-2659 Google Scholar
  • 17. Fiksel, J. (2003). ‘Designing resilient, sustainable systems’. Environmental Science and Technology. 37, 23, 5330-5339 Google Scholar
  • 18. Fisher, R.E. , Norman, M. (2010). ‘Developing measurement indices to enhance protection and resilience of critical infrastructures and key resources’. Journal of Business Continuity and Emergency Planning. 4, 3, 191-206 Google Scholar
  • 19. Hartmann, S. (2001). ‘Project scheduling with multiple modes: a genetic algorithm’. Annals of Operations Research. 102, 1–4, 111-135 Google Scholar
  • 20. Henry, D. , Ramirez-Marquez, J.E. (2012). ‘Generic metrics and quantitative approaches for system resilience as a function of time’. Reliability Engineering and System Safety. 99, 114-122 Google Scholar
  • 21. Holling, C. (1973). ‘Resilience and stability of ecological systems’. Annual Review of Ecology and Systematics. 4, 1-23 Google Scholar
  • 22. Jarboui, B. , Damak, N. , Siarry, P. , Rebai, A. (2008). ‘A combinatorial particle swarm optimization for solving multi-mode resource-constrained project scheduling problems’. Applied Mathematics and Computation. 195, 1, 299-308 Google Scholar
  • 23. Jozefowska, J. , Mika, M. , Rozychi, R. , Waligora, G. , Weglarz, J. (2001). ‘Simulated annealing for multimode resource-constrained project scheduling’. Annals of Operations Research. 102, 1–4, 137-155 Google Scholar
  • 24. Katina, P.F. , Hester, P.T. (2013). ‘Systemic determination of infrastructure criticality’. International Journal of Critical Infrastructures. 9, 3, 211-225 AbstractGoogle Scholar
  • 25. Kolisch, R. , Drexl, A. (1997). ‘Local search for nonpreemptive multimode resource-constrained project scheduling’. IIE Transactions. 29, 11, 987-999 Google Scholar
  • 26. Luna, R. , Balakrishnan, N. , Dagli, C. (2011). ‘Postearthquake recovery of a water distribution system: discrete event simulation using colored Petri nets’. J. Infrastruct. Syst.. 17, 1, 25-34 Google Scholar
  • 27. Madni, A.A. , Jackson, S. (2009). ‘Towards a conceptual framework for resilience engineering’. IEEE Systems Journal. 3, 2, 181-191 Google Scholar
  • 28. Mori, M. , Tseng, C.C. (1997). ‘A genetic algorithm for multimode resource-constrained project scheduling’. European Journal of Operational Research. 100, 1, 134-141 Google Scholar
  • 29. Obama, B. (2013). ‘Presidential Policy Directive 21: Critical Infrastructure Security and Resilience’. Washington, DC Google Scholar
  • 30. Ozdamar, L. (1999). ‘A genetic algorithm approach to a general category project scheduling problem’. IEEE Transactions on Systems, Man and Cybernetics, Part C. 29, 1, 44-59 Google Scholar
  • 31. Park, J. , Seager, T.P. , Rao, P.S.C. , Convertino, M. , Linkov, I. (2013). ‘Integrating risk and resilience approaches to catastrophe management in engineering systems’. Risk Analysis. 33, 3, 356-366 Google Scholar
  • 32. Reagan, R. (1982). ‘Executive Order 13282, National Security Telecommunications Advisory Committee’. Washington, DC Google Scholar
  • 33. Rose, A. (2007). ‘Economic resilience to natural and man-made disasters; multidisciplinary origins and contextual dimensions’. Environmental Hazards. 7, 4, 383-398 Google Scholar
  • 34. Rose, A. , Liao, S-Y. (2005). ‘Modeling regional economic resilience to disasters: a computable general equilibrium analysis of water service disruptions’. Journal of Regional Science. 45, 1, 75-112 Google Scholar
  • 35. Sempier, T.T. , Swann, D.L. , Emmer, R. , Sempier, S.H. , Schneider, M. (2010). ‘Coastal community resilience index: a community self-assessment’. (accessed 17 June 2013), [online] http://www.masgc.org/pdf/masgp/08-014.pdf Google Scholar
  • 36. Tierney, K. , Bruneau, M. ‘Conceptualizing and measuring resilience: a key to disaster loss reduction’. TR News. 2007, 05, 14-17 Google Scholar
  • 37. Transportation Safety Administration (TSA) (2007). Transportation Systems Critical Infrastructure and Key Resources Sector-Specific Plan as Input to the National Infrastructure Protection Plan. Washington, DC Google Scholar
  • 38. Tseng, L-Y. , Chen, S-C. (2009). ‘Two-phase genetic local search algorithm for the multimode resource-constrained project scheduling problem’. IEEE Transactions on Evolutionary Computation. 3, 4, 848-857 Google Scholar
  • 39. Vugrin, E.D. , Camphouse, R.C. ‘Infrastructure resilience assessment through control design’. International Journal of Critical Infrastructures. 2011, 10, 7, 3, 243-260 AbstractGoogle Scholar
  • 40. Vugrin, E.D. , Warren, D.E. , Ehlen, M.A. , Camphouse, R.C. , Gopalakrishnan, K. Peeta, S. (2010). ‘A framework for assessing the resilience of infrastructure and economic systems’. Sustainable and Resilient Critical Infrastructure Systems: Simulation, Modeling and Intelligent Engineering. New York:Springer-Verlag, Inc. Google Scholar
  • 41. Wang, J. , Qiao, C. , Yu, H. (2011). ‘On progressive network recovery after a major disruption’. Proceedings of IEEE INFOCOM 2011. 10–15 April, Shanghai Google Scholar
  • 42. Xu, N. , Guikema, S.D. , Davidson, R.A. , Nozick, L.K. , Çağnan, Z. , Vaziri, K. (2007). ‘Optimizing scheduling of post-earthquake electric power restoration tasks’. Earthquake Engineering and Structural Dynamics. 36, 2, 265-284 Google Scholar