Research on timeliness evaluation model of online teaching based on intelligent learning
Abstract
To improve the effect of online teaching, evaluate the timeliness of online teaching, and provide a more effective analysis method for the current teaching system, we proposed an online teaching timeliness evaluation model based on intelligent learning. Empirical analysis is carried out on statistical data, and a timeliness evaluation model for online teaching based on intelligent learning is proposed. In this model, a statistical information analysis model of online teaching timeliness evaluation is constructed. Then, mining method of association rules is used for segmentation fusion and autocorrelation matching detection of teaching timeliness. Finally, using analysis method for statistical characteristic to conduct statistical analysis and robustness test to the timeliness of online teaching. The simulation results show that this method has a high level of confidence in the timeliness evaluation of online teaching, which improves the quantitative analysis ability of online teaching timeliness.