Skip to main content
No Access

Coarse indexing of iris database based on iris colour

Published Online:pp 353-375https://doi.org/10.1504/IJBM.2011.042817

This paper presents a new iris indexing technique based on iris colour. Blue and red indices are computed from the chrominance values of the pixels and indexing methods are proposed by combining these indices. The performance measures such as the hit rate and the penetration rate computed on the colour iris databases, namely UBIRIS (Proenca and Alexandre, 2005), and UPOL (Dobeš and Machala, 2004), show the effectiveness of the iris colour for indexing large iris databases. From the experimental results, it is observed that the indexing method with set intersection-based combination of indices achieves the best performance with a hit rate above 98% and the penetration rate less than 25%.

Keywords

iris recognition, biometric, indexing, iris colour

References

  • 1. S. Arivazhagan, L. Ganesan, T. Srividya, '‘Iris recognition using multi-resolution transforms’' International Journal of Biometrics (2009) Google Scholar
  • 2. W.W. Boles, B. Boashash, '‘A human identification technique using images of the iris and wavelet transform’' IEEE Transactions on Signal Processing (1998) Google Scholar
  • 3. T. Camus, R. Wildes, '‘Reliable and fast eye finding in close-up images’' Proceedings of the IEEE International Conference on Pattern Recognition (2002) Google Scholar
  • 4. J. Daugman, '‘High confidence visual recognition of persons by a test of statistical independence’' IEEE Trans. Pattern Analysis and Machine Intelligence (1993) Google Scholar
  • 5. J. Daugman, '‘Probing the uniqueness and randomness of IrisCodes: results from 200 billion iris pair comparisons’' Proceedings of the IEEE (2006) Google Scholar
  • 6. J. Daugman, '‘New methods in iris recognition’' IEEE Transactions on Systems, Man and Cybernetics (2007) Google Scholar
  • 7. M. Dobeš, L. Machala, Iris Database (2004) Google Scholar
  • 8. J. Fu, H. John Caulfield, S-M. Yoo, V. Atluri, '‘Use of artificial color filtering to improve iris recognition and searching’' Pattern Recognition Letters (2005) Google Scholar
  • 9. A. Gyaourova, A. Ross, '‘Coding scheme for indexing multimodal biometric databases’' (2009) Google Scholar
  • 10. F. Hao, J. Daugman, P. Zielinski, '‘A fast search algorithm for a large fuzzy database’' IEEE Transactions on Information Forensics and Security (2008) Google Scholar
  • 11. H. Mehrotra, G.S. Badrinath, B. Majhi, P. Gupta, '‘Indexing iris biometric database using energy histogram of DCT subbands’' Journal of Communications in Computer and Information Science (2009a) Google Scholar
  • 12. H. Mehrotra, B. Majhi, P. Gupta, '‘Robust iris indexing scheme using geometric hashing of SIFT keypoints’' J. Network and Computer Applications (2010) Google Scholar
  • 13. H. Mehrotra, B. Srinivas, B. Majhi, P. Gupta, '‘A efficient iris recognition using local feature descriptor’' (2009b) Google Scholar
  • 14. R. Mukherjee, Indexing Techniques for Fingerprint and Iris Databases (2007) Google Scholar
  • 15. R. Mukherjee, A. Ross, '‘Indexing iris images’' Proc. 19th International Conference on Pattern Recognition (2008) Google Scholar
  • 16. C.A. Poynton, A Technical Introduction to Digital Video (1996) Google Scholar
  • 17. H. Proenca, L.A. Alexandre, '‘UBIRIS: a noisy iris image database’' Lecture Notes in Computer Science (2005) Google Scholar
  • 18. N.B. Puhan, N. Sudha, '‘A novel iris database indexing method using the iris color’' Proc. 3rd IEEE Conf. on Industrial Electronics and Applications (ICIEA) (2008) Google Scholar
  • 19. N.B. Puhan, N. Sudha, S.K. Anirudh, '‘Efficient segmentation technique for poor quality frontal view iris images using Fourier spectral density’' Signal Image and Video Processing (2011) Google Scholar
  • 20. N. Sudha, N.B. Puhan, H. Xia, X. Jiang, '‘Iris recognition on edge maps’' IET Computer Vision (2009) Google Scholar
  • 21. H.C. Sulochana, S. Selvan, '‘Robust iris recognition algorithm for non-cooperative environment’' International Journal of Biometrics (2010) Google Scholar
  • 22. J. Thornton, M. Savvides, B.V.K. Vijayakumar, '‘A Bayesian approach to deformed pattern matching of iris images’' IEEE Transactions on Pattern Analysis and Machine Intelligence (2007) Google Scholar
  • 23. F-M.E. Uzoka, T. Ndzinge, '‘An investigation of factors affecting biometric technology adoption in a developing country context’' International Journal of Biometrics (2009) Google Scholar
  • 24. M. Vatsa, R. Singh, A. Noore, '‘Improving iris recognition performance using segmentation, quality enhancement, match score fusion and indexing’' IEEE Transaction on Systems, Man and Cybernetics-B (2008) Google Scholar
  • 25. R.P. Wildes, '‘Iris recognition: an emerging biometric technology’' Proceedings of the IEEE (1997) Google Scholar